
 Quick start

1. Download
git clone https://github.com/Ensembl/ensembl-vep.git

2. Install
cd ensembl-vep
perl INSTALL.pl

3. Test
./vep -i examples/homo_sapiens_GRCh38.vcf --cache

 Download documentation in PDF format

 Tutorial

 Download and install
Download

What's new in release 104

Installation

Using VEP in Windows

Docker

 Data formats
Input

Output

 Running VEP
Options

 Annotation sources

Caches

GFF/GTF files

FASTA files

Databases

 Filtering results

Running filter_vep

Writing filters

 Custom annotations
Data formats

Options

 Plugins

Existing plugins

Using plugins

 Examples & use cases

Example commands

gnomAD and ExAC

Citations and VEP users

 Other information
Performance

Multiple assemblies

Summarising annotation

HGVS notations

RefSeq transcripts

 FAQ

General questions

Web VEP questions

Command line VEP questions

Variant Effect Predictor Command line VEP

Use VEP to analyse your variation data locally. No limits, powerful, fast
and extendable, command line VEP is the way to get the most out of
VEP and Ensembl.

VEP is a powerful and highly configurable tool - have a browse through
the documentation. You might also like to read up on the data formats
that VEP uses, and the different ways you can access genome data.
The VEP script can annotate your variants with custom data, be
extended with plugins, and use powerful filtering to find biologically
interesting results.

Beginners should have a run through the tutorial, or try the web
interface first.

If you use VEP in your work, please cite our latest publication McLaren
et. al. 2016 (doi:10.1186/s13059-016-0974-4)

Any questions? Send an email to the Ensembl developers' mailing list
or contact the Ensembl Helpdesk.

 Documentation contents

https://www.ensembl.org/info/docs/tools/vep/script/VEP_script_documentation.pdf
https://www.ensembl.org/info/docs/tools/vep/script/vep_tutorial.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#download
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#new
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#windows
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#docker
https://www.ensembl.org../vep_formats.html
https://www.ensembl.org../vep_formats.html#input
https://www.ensembl.org../vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#basic
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#database
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html#filter_run
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html#filter_write
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_formats
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#plugins_existing
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#plugins_use
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#examples
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#citations
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#faster
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org../vep_faq.html
https://www.ensembl.org../vep_faq.html#general
https://www.ensembl.org../vep_faq.html#web
https://www.ensembl.org../vep_faq.html#script
https://www.ensembl.org/info/docs/tools/vep/script/index.html
https://www.ensembl.org../vep_formats.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_tutorial.html
https://www.ensembl.org../online/index.html
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4
https://www.ensembl.org/info/about/contact/
https://www.ensembl.org/Help/Contact

Variant Effect Predictor Tutorial

Install VEP

Have you downloaded VEP yet? Use git to clone it:

git clone https://github.com/Ensembl/ensembl-vep
cd ensembl-vep

VEP uses "cache files" or a remote database to read genomic data. Using cache files gives the best performance - let's set one up using the installer:

perl INSTALL.pl

Hello! This installer is configured to install v104 of the Ensembl API for use by VEP.
It will not affect any existing installations of the Ensembl API that you may have.

It will also download and install cache files from Ensembl's FTP server.

Checking for installed versions of the Ensembl API...done
It looks like you already have v104 of the API installed.
You shouldn't need to install the API

Skip to the next step (n) to install cache files

Do you want to continue installing the API (y/n)?

If you haven't yet installed the API, type "y" followed by enter, otherwise type "n" (perhaps if you ran the installer before). At the next prompt, type "y" to install cache files

Do you want to continue installing the API (y/n)? n
 - skipping API installation

VEP can either connect to remote or local databases, or use local cache files.
Cache files will be stored in /nfs/users/nfs_w/wm2/.vep
Do you want to install any cache files (y/n)? y

Downloading list of available cache files
The following species/files are available; which do you want (can specify multiple separated by spaces):
1 : ailuropoda_melanoleuca_vep_104_ailMel1.tar.gz
2 : anas_platyrhynchos_vep_104_BGI_duck_1.0.tar.gz
3 : anolis_carolinensis_vep_104_AnoCar2.0.tar.gz
...
42 : homo_sapiens_vep_104_GRCh38.tar.gz
...

?

Type "42" (or the relevant number for homo_sapiens and GRCh38) to install the cache for the latest human assembly. This will take a little while to download and unpack! By default VEP
assumes you are working in human; it's easy to switch to any other species using --species [species].

? 42
 - downloading http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/vep/homo_sapiens_vep_104_GRCh38.tar.gz
 - unpacking homo_sapiens_vep_104_GRCh38.tar.gz

Success

By default VEP installs cache files in a folder in your home area ($HOME/.vep); you can easily change this using the -d flag when running the installer. See the installer documentation
for more details.

Run VEP

VEP needs some input containing variant positions to run. In their most basic form, this should just be a chromosomal location and a pair of alleles (reference and alternate). VEP can
also use common formats such as VCF and HGVS as input. Have a look at the Data formats page for more information.

We can now use our cache file to run VEP on the supplied example file examples/homo_sapiens_GRCh38.vcf, which is a VCF file containing variants from the 1000 Genomes Project,
remapped to GRCh38:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache

2013-07-31 09:17:54 - Read existing cache info
2013-07-31 09:17:54 - Starting...
ERROR: Output file variant_effect_output.txt already exists. Specify a different output file
with --output_file or overwrite existing file with --force_overwrite

You may see this error message if you've already run VEP in the same directory. VEP tries not to trample over your existing files unless you tell it to. So let's tell it to using --
force_overwrite

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite

By default VEP writes to a file named "variant_effect_output.txt" - you can change this file name using -o. Let's have a look at the output.

head variant_effect_output.txt

ENSEMBL VARIANT EFFECT PREDICTOR v104.0
Output produced at 2017-03-21 14:51:27
Connected to homo_sapiens_core_104_38 on ensembldb.ensembl.org

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_species
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org../vep_formats.html#input
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_force_overwrite
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_output_file

Using cache in /homes/user/.vep/homo_sapiens/104_GRCh38
Using API version 104, DB version 104
polyphen version 2.2.2
sift version sift5.2.2
COSMIC version 78
ESP version 20141103
gencode version GENCODE 25
genebuild version 2014-07
HGMD-PUBLIC version 20162
regbuild version 16
assembly version GRCh38.p7
ClinVar version 201610
dbSNP version 147
Column descriptions:
Uploaded_variation : Identifier of uploaded variant
Location : Location of variant in standard coordinate format (chr:start or chr:start-end)
Allele : The variant allele used to calculate the consequence
Gene : Stable ID of affected gene
Feature : Stable ID of feature
Feature_type : Type of feature - Transcript, RegulatoryFeature or MotifFeature
Consequence : Consequence type
cDNA_position : Relative position of base pair in cDNA sequence
CDS_position : Relative position of base pair in coding sequence
Protein_position : Relative position of amino acid in protein
Amino_acids : Reference and variant amino acids
Codons : Reference and variant codon sequence
Existing_variation : Identifier(s) of co-located known variants
Extra column keys:
IMPACT : Subjective impact classification of consequence type
DISTANCE : Shortest distance from variant to transcript
STRAND : Strand of the feature (1/-1)
FLAGS : Transcript quality flags
#Uploaded_variation Location Allele Gene Feature Feature_type Consequence ...
rs7289170 22:17181903 G ENSG00000093072 ENST00000262607 Transcript synonymous_variant ...
rs7289170 22:17181903 G ENSG00000093072 ENST00000330232 Transcript synonymous_variant ...

The lines starting with "#" are header or meta information lines. The final one of these (highlighted in blue above) gives the column names for the data that follows. To see more
information about VEP's output format, see the Data formats page.

We can see two lines of output here, both for the uploaded variant named rs7289170. In many cases, a variant will fall in more than one transcript. Typically this is where a single gene
has multiple splicing variants. Here our variant has a consequence for the transcripts ENST00000262607 and ENST00000330232.

In the consequence column, we can see the consequence term synonymous_variant. This is terms forms part of an ontology for describing the effects of sequence variants on genomic
features, produced by the Sequence Ontology (SO) . See our predicted data page for a guide to the consequence types that VEP and Ensembl uses.

Let's try something a little more interesting. SIFT is an algorithm for predicting whether a given change in a protein sequence will be deleterious to the function of that protein. VEP can
give SIFT predictions for most of the missense variants that it predicts. To do this, simply add --sift b (the b means we want both the prediction and the score):

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --sift b

SIFT calls variants either "deleterious" or "tolerated". We can use the VEP's filtering tool to find only those that SIFT considers deleterious:

./filter_vep -i variant_effect_output.txt -filter "SIFT is deleterious" | grep -v "##" | head -n5

#Uploaded_variation Location Allele Gene Feature ... Extra
rs2231495 22:17188416 C ENSG00000093072 ENST00000262607 ... SIFT=deleterious(0.05)
rs2231495 22:17188416 C ENSG00000093072 ENST00000399837 ... SIFT=deleterious(0.05)
rs2231495 22:17188416 C ENSG00000093072 ENST00000399839 ... SIFT=deleterious(0.05)
rs115736959 22:19973143 A ENSG00000099889 ENST00000263207 ... SIFT=deleterious(0.01)

Note that the SIFT score appears in the "Extra" column, as a key/value pair. This column can contain multiple key/value pairs depending on the options you give to VEP. See the Data
formats page for more information on the fields in the Extra column.

You can also configure how VEP writes its output using the --fields flag.

You'll also see that we have multiple results for the same gene, ENSG00000093072. Let's say we're only interested in what is considered the canonical transcript for this gene (--
canonical), and that we want to know what the commonly used gene symbol from HGNC is for this gene (--symbol). We can also use a UNIX pipe to pass the output from VEP directly
into the filtering tool:

So now we can see all of the variants that have a deleterious effect on canonical transcripts, and the symbol for their genes. Nice!

For species with an Ensembl database of variants, VEP can annotate your input with identifiers and frequency data from variants co-located with your input data. For human, VEP's
cache contains frequency data from 1000 Genomes, NHLBI-ESP and ExAC. Since our input file is from 1000 Genomes, let's add frequency data using --af_1kg:

We can see frequency data for the AFR, AMR, EAS, EUR and SAS continental population groupings; these represent the frequency of the alternate (ALT) allele from our input (G in the
case of rs7289170). Note that the Existing_variation column is populated by the identifier of the variant found in the VEP cache (and that it corresponds to the identifier from our input in
Uploaded_variation). To retrieve only this information and not the frequency data, we could have used --check_existing (--af_1kg silently switches on --check_existing).

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --sift b --canonical --symbol --tab --fields Uploaded_variation,SYMB

./filter_vep --filter "CANONICAL is YES and SIFT is deleterious"

...

#Uploaded_variation SYMBOL CANONICAL SIFT
rs2231495 CECR1 YES deleterious(0.05)
rs115736959 ARVCF YES deleterious(0.01)
rs116398106 ARVCF YES deleterious(0)
rs116782322 ARVCF YES deleterious(0)
...
rs115264708 PHF21B YES deleterious(0.03)

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --af_1kg -o STDOUT | grep -v "##" | head -n2

#Uploaded_variation Location Allele Gene Feature ... Existing_variation Extra
rs7289170 22:17181903 G ENSG00000093072 ENST00000262607 ... rs7289170 IMPACT=LOW;STRAND=-1;AFR_AF=0.2390

https://www.ensembl.org../vep_formats.html#output
http://www.sequenceontology.org/
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_sift
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org../vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fields
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_canonical
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
https://www.ensembl.org/info/genome/variation/species/species_data_types.html#sources
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing

Over to you!

This has been just a short introduction to the capabilities of VEP - have a look through some more of the options, see them all on the command line using --help, or try using the shortcut
--everything which switches on almost all available output fields! Try out the different options in the filtering tool, and if you're feeling adventurous why not use some of your own data to
annotate your variants or have a go with a plugin or two.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_help
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html

Variant Effect Predictor Download and install

Download

Download ensembl-vep package (see below the different ways to download it) and then follow the installation instructions.

Using Git

 Clone the Git repository

Use git to download the ensembl-vep package:

git clone https://github.com/Ensembl/ensembl-vep.git
cd ensembl-vep

 Update to a newer version

To update from a previous version:

cd ensembl-vep
git pull
git checkout release/104
perl INSTALL.pl

 Use an older version

To use an older version (this example shows how to set up release 87):

cd ensembl-vep
git checkout release/87
perl INSTALL.pl

Download the Zipped package file

Users without the git utility installed may download a zip file from GitHub, though we would always recommend using git if possible.

curl -L -O https://github.com/Ensembl/ensembl-vep/archive/release/104.zip
unzip 104.zip
cd ensembl-vep-release-104/

Previous versions (ensembl-tools)

Previously VEP was available as part of the ensembl-tools package (see the Ensembl archive site for documentation). The following downloads are available for archival purposes.

Download version 87 (Ensembl 87)

Download version 86 (Ensembl 86)

Download version 85 (Ensembl 85)

Download version 84 (Ensembl 84)

Download version 83 (Ensembl 83)

Download version 82 (Ensembl 82)

Download version 81 (Ensembl 81)

Download version 80 (Ensembl 80)

Download version 79 (Ensembl 79)

Download version 78 (Ensembl 78)

Download version 77 (Ensembl 77)

Download version 76 (Ensembl 76)

Download version 75 (Ensembl 75)

Download version 74 (Ensembl 74)

Download version 73 (Ensembl 73)

Download version 72 (Ensembl 72)

Download version 71 (Ensembl 71)

Download version 2.8 (Ensembl 70)

Download version 2.7 (Ensembl 69)

Download version 2.6 (Ensembl 68)

Download version 2.5 (Ensembl 67)

Download version 2.4 (Ensembl 66)

Download version 2.3 (Ensembl 65)

Download version 2.2 (Ensembl 64 - ensembl-tools/scripts/variant_effect_predictor)

Download version 2.1 (Ensembl 63)

Download version 2.0 (Ensembl 62 - ensembl-variation/scripts/examples)

What's new?

New in version 104 (February 2021)

http://e87.ensembl.org/info/docs/tools/vep/script/index.html
https://github.com/Ensembl/ensembl-tools/archive/release/87.zip
https://github.com/Ensembl/ensembl-tools/archive/release/86.zip
https://github.com/Ensembl/ensembl-tools/archive/release/85.zip
https://github.com/Ensembl/ensembl-tools/archive/release/84.zip
https://github.com/Ensembl/ensembl-tools/archive/release/83.zip
https://github.com/Ensembl/ensembl-tools/archive/release/82.zip
https://github.com/Ensembl/ensembl-tools/archive/release/81.zip
https://github.com/Ensembl/ensembl-tools/archive/release/80.zip
https://github.com/Ensembl/ensembl-tools/archive/release/79.zip
https://github.com/Ensembl/ensembl-tools/archive/release/78.zip
https://github.com/Ensembl/ensembl-tools/archive/release/77.zip
https://github.com/Ensembl/ensembl-tools/archive/release/76.zip
https://github.com/Ensembl/ensembl-tools/archive/release/75.zip
https://github.com/Ensembl/ensembl-tools/archive/release/74.zip
https://github.com/Ensembl/ensembl-tools/archive/release/73.zip
https://github.com/Ensembl/ensembl-tools/archive/release/72.zip
https://github.com/Ensembl/ensembl-tools/archive/release/71.zip
https://github.com/Ensembl/ensembl-tools/archive/release/70.zip
https://github.com/Ensembl/ensembl-tools/archive/release/69.zip
https://github.com/Ensembl/ensembl-tools/archive/release/68.zip
https://github.com/Ensembl/ensembl-tools/archive/release/67.zip
https://github.com/Ensembl/ensembl-tools/archive/release/66.zip
https://github.com/Ensembl/ensembl-tools/archive/release/65.zip
https://github.com/Ensembl/ensembl-tools/archive/release/64.zip
https://github.com/Ensembl/ensembl-variation/archive/release/63.zip
https://github.com/Ensembl/ensembl-variation/archive/release/62.zip

Human GRCh37 cache files now include dbSNP 154!

--var_synonyms output structure has been altered when used with --json

VEP Plugins:

dbNSFP - now supports matching by peptides

SpliceAI - now compares gene symbols to improve score accuracy

DisGeNET - improvements have been made to output structure

Previous version history - from version 88:

New in version 103 (February 2021)

New: Variant Recoder is now available as a web tool

Variant Recoder output is now allele specific

Web VEP Options:

Variant Synonyms are now available through the web interface

MasterMind results are available through the REST and web interfaces

VEP Options:

--mane : Now provides additional MANE Plus Clinical annotations alongside MANE Select

--mane_select : Returns MANE Select annotations

New in version 102 (November 2020)

VEP options:

--uniprot: Now we report precise Ensembl translation to UniProt isoform mappings.

--spdi - new: Add genomic SPDI notation.

Web VEP options:

Shifting variants in the 3' direction with --shift_3prime and --shift_genomic is now supported through the web interface.

DisGeNET - new: DisGeNET results are available through the web interface.

SpliceAI - new: SpliceAI pre-calculated scores are available through the web interface.

VEP filter options:

--soft_filter - new: Option to only flag the failing variation in the FILTER column and keep the entries in the output VCF file.

New in version version 101 (Aug 2020)

New options:

--var_synonyms: Report known synonyms for colocated variants. Must be used with --cache.

VEP plugins:

neXtProt - new: neXtProt retrieves comprehensive human-centric protein-related data for missense variants

New in version 100 (Apr 2020)

Human GRCh37 variant and phenotype data has been updated with multiple data sets including dbSNP153, ClinVar’s 201912 release and COSMIC release 90

The GRCh37 RefSeq transcript set has been updated to NCBI's 1st November 2019 release (initially annotated on GCF_000001405.25)!

New options:

--shift_3prime: Right aligns all variants relative to their associated transcripts prior to consequence calculation

--shift_genomic: Right aligns all variants, including intergenic variants, before consequence calculation and updates the Location field

VEP plugins:

SpliceAI - new: SpliceAI is a deep neural network, developed by Illumina, Inc that predicts splice junctions from an arbitrary pre-mRNA transcript sequence.

DisGeNET - new: DisGeNET is a database containing human variant-disease associations

New in version 99 (Jan 2020)

Human GRCh38 cache files now contain variants from dbSNP153

New options have been added to REST:

vcf_string: VEP can now provide a VCF-like string representing the input variant

transcript_version: Add version numbers to Ensembl transcript identifiers

SpliceRegion: Provides granular predictions of splicing effects (Details)

LoF: LOFTEE implements a set of filters to predict LoF (loss-of-function) variants. (Details)

New in version 98 (Sept 2019)

Human GRCh38 cache files now contain variants from dbSNP152

This employs a new clustering strategy which may result in different rsIDs being reported as known variants for some insertions and deletions - for more information see here

--clin_sig_allele has been updated to be used by default

New options:

--custom_multi_allelic: prevents VEP from assuming that comma separated lists in custom annotations are allele specific

MANE attributes are now included within VEP cache files, web VEP and REST

VEP plugins:

satMutMPRA - new: measures variant effects on gene RNA expression for 21 regulatory elements

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_var_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_json
http://github.com/Ensembl/VEP_plugins/blob/release/104/dbNSFP.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/SpliceAI.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/DisGeNET.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane_select
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_uniprot
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_spdi
https://www.ncbi.nlm.nih.gov/variation/notation/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift3prime
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shiftgenomic
http://github.com/Ensembl/VEP_plugins/blob/release/104/DisGeNET.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/SpliceAI.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html#opt_softfilter
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_var_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
http://github.com/Ensembl/VEP_plugins/blob/release/104/neXtProt.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_3prime
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_genomic
http://github.com/Ensembl/VEP_plugins/blob/release/104/SpliceAI.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/DisGeNET.pm
https://raw.githubusercontent.com/ensembl-variation/VEP_plugins/master/SpliceRegion.pm
https://github.com/konradjk/loftee/blob/master/README.md
http://www.ensembl.info/2019/08/29/coming-soon-to-an-ensembl-near-you-dbsnp-2-0/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_clin_sig_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom_multi_allelic
http://github.com/Ensembl/VEP_plugins/blob/release/104/satMutMPRA.pm

VEP Installer:

HTSLib v1.9 is now installed by default (previously v1.3.2)

Bio::DB::HTS v2.11 is now installed by default (previously v2.9)

New option 'PLUGINSDIR' allows you to specify the installation directory for plugins

New in version 97 (July 2019)

Allele-specific clinical significance reported (it was previously variant-specific).

New options:

--clin_sig_allele: report allele specific clinical significance.

--mane: report if a transcript is the MANE Select.

--max_sv_size: extend the maximum Structural Variant size VEP can process.

--no_check_variants_order: permit the use of unsorted input files (WARNING - this is slow and requires more memory).

--overlaps: report the proportion and length of a transcript overlapped by a structural variant in VCF format.

Include the --mane option into the --everything group option.

Update --pick and --pick_order to support MANE Select transcripts.

Check if the input variants are ordered: non ordered variants slow down VEP and require more memory.

Skip annotation of complex and long structural variants and display a warning message.

Variant recoder: add an option --vcf_string to return results in VCF format.

VEP plugins:

FunMotifs - new: provide information about overlapping tissue-specific transcription factor motifs.

Mastermind - new: reports variants that have clinical evidence cited in the medical literature.

StructuralVariantOverlap - new: provide information from overlapping structural variants.

G2P - update: now the plugin can be run offline.

Phenotypes - update: change the format of the data file (from BED to GVF).

VEP web tool: the transcript identifiers are now returned with versions unless otherwise specified.

VEP installer: tabix-indexed variant cache files are now installed by default.

New in version 96 (April 2019)

Add SPDI format for VEP (input) and Variant Recoder (input and output).

Update VEP cache with gnomAD 2.1 (human).

Update the Docker VEP base image to Ubuntu 18.04.

Retire deprecated flags: --gmaf, --maf_1kg, --maf_esp, --maf_exac, --check_alleles, --html, --gvf.

Retire legacy code about the pileup input format, which is no longer supported.

Deprecate the installation flag "--VERSION"

Force numbers to be encoded as numbers in JSON output

VEP plugins:

NearestExonJB - new: find the nearest exon junction boundary to a coding sequence variant.

Conservation - update: can use BigWig files instead of the Ensembl Compara database.

dbNSFP - update: support of the dbNSFP data version 4.

Phenotypes - update: possibility to report the phenotype description(s) and other information.

PostGAP - update: replace the plugin name POSTGAP to PostGAP.

New in version 95 (January 2019)

The VEP parser is now more permissive for the GFF files (ID attribute only required for genes and transcripts)

Add new option --show_ref_allele to include the allele reference in the VEP default output and the tab output formats

Add a warning message when the VEP annotations INFO field hasn't been found/recognised in the VCF input file

VEP Docker image:

Reduce the size of the VEP Docker image by about 45%.

Include the Linkage disequilibrium script in the VEP Docker image, making possible to run the LD plugin

New VEP plugins:

Reference quality

OpenTargets results (POSTGAP)

Single letter amino acid for HGVS

New in version 94 (October 2018)

RefSeq transcript version updated.

Minor updates on the VEP web tool interface.

When the input data format is not specified on the command line, VEP attempts to detect it. The assumed format is now reported in verbose mode (--verbose).

VEP assigns assigned the consequence types TF_binding_site_variant, TFBS_ablation, TFBS_fusion, TFBS_amplification and TFBS_translocation to human and mouse variants
which overlapped motif features. These annotations will not be available in VEP caches for human in release 94 so must be added as a custom annotation.

New in version 93 (July 2018)

Update the JSON output format (allele frequencies) for the Ensembl REST - VEP endpoints. See more information .

The new Ensembl release brings more frequency data from gnomAD .

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_clin_sig_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_max_sv_size
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_check_variants_order
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_overlaps
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_order
https://www.ensembl.org/info/docs/tools/vep/recoder/index.html#opt_vcf_string
http://github.com/Ensembl/VEP_plugins/blob/release/104/FunMotifs.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/Mastermind.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/StructuralVariantOverlap.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/G2P.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/Phenotypes.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/NearestExonJB.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/Conservation.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/dbNSFP.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/Phenotypes.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/PostGAP.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_show_ref_allele
http://github.com/Ensembl/VEP_plugins/blob/release/104/ReferenceQuality.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/POSTGAP.pm
http://github.com/Ensembl/VEP_plugins/blob/release/104/SingleLetterAA.pm
https://www.ensembl.org/Tools/VEP
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_verbose
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
http://rest.ensembl.org/#VEP
http://github.com/Ensembl/ensembl-rest/wiki/Change-log#70---2018-06
http://gnomad.broadinstitute.org/

Add the possibility to print the content of the FILTER column (from the VCF custom annotation files) in the output.

Include the Ensembl/ensembl-xs repository in Docker image to speed up the VEP container.

Add a new consequence 'extended_intronic_splice_region_variant' in the SpliceRegion VEP plugin.

New in version 92 (April 2018)

New VEP plugin REVEL (see REVEL plugin).

Get ambiguity code with --ambiguity.

GFF/GTF files with exons assigned to multiple transcripts are now supported.

Improved 1000 Genomes Project frequencies.

New in version 91 (December 2017)

New input format "region" allows REST-style input to VEP.

Replace your input variant reference allele with the correct one from the genome with --lookup_ref.

Add version numbers to Ensembl transcripts with --transcript_version.

New in version 90 (August 2017)

gnomAD exomes allele frequencies now available with --af_gnomad, replacing ExAC. gnomAD genomes and ExAC are available via custom annotation.

VEP is now available as a Docker image.

RefSeq transcripts in VEP cache files are now "corrected" from the reference genome sequence.

VEP's algorithm for matching colocated known variants has been overhauled - details.

Change VEP's default (5kb) up/downstream distance with --distance. This supercedes the functionality of the UpDownDistance VEP plugin.

Feed input directly to VEP with --input_data.

Suppress header output with --no_headers.

Detailed installation instructions for Bio::DB::BigFile to access bigWig custom annotation files.

New in version 89 (May 2017)

exclude known variants with unknown (null) alleles with --exclude_null_alleles.

write compressed output with --compress_output.

improved matching of alleles in custom VCF files.

API perldoc documentation added.

New in version 88 (March 2017)

ensembl-vep is now the officially supported version of VEP

Documentation updated to reflect switch to ensembl-vep. See the Ensembl archive site for documentation of the obsolete ensembl-tools VEP.

The VEP script is now named simply vep (formerly variant_effect_predictor.pl or vep.pl)

Directly use tabix-indexed GFF/GTF files as annotation sources

Allele-specific reporting of frequencies (--af and more) and custom VCF annotations

--check_existing now compares alleles by default, disable with --no_check_alleles

Report the highest allele frequency observed in any population from 1000 genomes, ESP or ExAC using --max_af

Get genomic HGVS nomenclature with --hgvsg

Find the gene or transcript with the nearest transcription start site (TSS) to each input variant with --nearest

filter_vep supports field/field comparisons e.g. AFR_AF > #EUR_AF

Exclude predicted (XM and XR) transcripts when using RefSeq or merged cache with --exclude_predicted

Filter transcripts used for annotation with --transcript_filter

pileup input format no longer supported

Older versions (ensembl-tools) - until version 87:

Versions of VEP up to and including 87 were released as part of the ensembl-tools package. See download links above.

New in version 87 (December 2016)

Shiny new code available for beta testing!

Some minor speed optimisations

Improve checks for valid chromosome names in input

Haplosaurus beta released - generate whole-transcript haplotype sequences from phased genotype data

New in version 86 (October 2016)

Chromosome synonyms supported when using VEP caches; may be loaded manually with --synonyms

New in version 85 (July 2016)

--pick now uses translated length instead of genomic transcript length

Support for epigenomes in regulatory features

New in version 84 (March 2016)

Add tab-delimited output option

Add transcript flags indicating if the transcript is 5'- or 3'-incomplete

Improve annotation of long variants where invariant parts of the alternate allele overlap splice regions

New in version 83 (December 2015)

http://github.com/Ensembl/ensembl-xs
http://github.com/Ensembl/VEP_plugins/blob/release/104/SpliceRegion.pm
http://www.ncbi.nlm.nih.gov/pubmed/27666373
http://github.com/Ensembl/VEP_plugins/blob/release/92/REVEL.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_ambiguity
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org../vep_formats.html#region
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_lookup_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_transcript_version
http://gnomad.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomad
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_distance
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_input_data
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_headers
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_null_alleles
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_compress_output
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
http://e87.ensembl.org/info/docs/tools/vep/script/index.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_max_af
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvsg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_nearest
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_predicted
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_transcript_filter
https://github.com/Ensembl/ensembl-vep
https://github.com/Ensembl/ensembl-vep#haplo
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#tab
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output

Speed:

Basic consequence calculations up to 2x faster than version 82

HGVS calculations up to 10x faster

FASTA sequence retrieval implements caching

Add ExAC project frequencies with --af_exac

APPRIS isoform annotations now available with --appris and used by --pick and others to prioritise VEP annotations

New in version 82 (September 2015)

Faster FASTA file access using Bio::DB::HTS/htslib and bgzipped FASTA files

Flag genes with phenotype associations

Some plugins now available for use via the web and REST interfaces

New in version 81 (July 2015)

Plugin registry means plugins can be installed from the VEP installer

GFF format now supported by VEP's cache converter

Fixes and improvements for sequence retrieval from FASTA files

New in version 80 (May 2015)

Flag added indicating if an overlapping known variant is associated with a phenotype, disease or trait

HGVS notations are now 3'-shifted by default (use --shift_hgvs to force enable/disable)

Source version information added to caches; see output file headers or use --show_cache_info

Get the variant class using --variant_class

CCDS status added to categories used by --pick flag (and others)

New in version 79 (March 2015)

Focus on performance and stability: ~100% faster than version 78 and a new test suite

New guide to getting VEP running faster

1000 Genomes Phase 3 data available in GRCh37 cache download (GRCh38 coming soon, see docs to access now)

VCF output has changed slightly to match output from other tools

Impact modifier added for each consequence type

New in version 78 (December 2014)

Customise --pick using --pick_order

Get transcript support level using --tsl

New in version 77 (October 2014)

Get the SO feature type of regulatory features using --regulatory and --biotype

New in version 76 (August 2014)

VEP now supports caches from multiple assemblies (--assembly) on the same software version - e.g. human builds GRCh37 and GRCh38

Protein identifiers from UniProt (SWISSPROT, TrEMBL and UniParc) now available using --uniprot

VEP can generate JSON output using --json

Two new analysis set options - --gencode_basic and the merged Ensembl/RefSeq cache (--merged)

Non-RefSeq transcripts now excluded by default when using the RefSeq or merged cache; use --all_refseq to include them

Let VEP pick one consequence per variant allele using --pick_allele

Allele now included alongside frequency for 1000 Genomes (--af_1kg) and ESP (--af_esp) data

Not strictly script-related, but the VEP REST API has come out of beta!

New in version 75 (February 2014)

let VEP pick one consequence per variant for you using --pick; includes all transcript-specific data

gene symbol available in RefSeq cache and when using --refseq

Installation and use of RefSeq cache improved - remember to use --refseq with your RefSeq cache!

Added --cache_version option, primarily to aid Ensembl Genomes users.

New in version 74 (December 2013)

retrieve the humDiv PolyPhen prediction instead of humVar using --humdiv

source for gene symbol available with --symbol

New in version 73 (August 2013)

NHLBI-ESP frequencies available in cache (--af_esp)

Pubmed IDs for cited existing variants available in cache (--pubmed)

Convert your cache to use tabix - much faster when retrieving co-located existing variants!

The installer can now update the VEP to the latest version and install FASTA files

--hgnc replaced by --symbol for non-human compatibility

HGVS strings are now part URI-escaped to avoid "=" sign clashes

use --allele_number to identify input alleles by their order in the VCF ALT field

use --total_length to give the total length of cDNA, CDS and protein sequences

add data from VCF INFO fields when using custom annotations

New in version 72 (June 2013)

Speed and stability improvements when using forking

http://exac.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_exac
https://www.ensembl.org/Help/Glossary?id=521
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_appris
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gene_phenotype
https://www.ensembl.org/Tools/VEP
http://rest.ensembl.org/#VEP
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gtf
https://www.ensembl.org../vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_show_cache_info
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_variant_class
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#faster
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#1kg_p3
https://www.ensembl.org../vep_formats.html#vcfout
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_order
https://www.ensembl.org/Help/Glossary?id=492
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_tsl
http://www.sequenceontology.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_regulatory
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_biotype
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_uniprot
https://www.ensembl.org../vep_formats.html#json
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_json
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gencode_basic
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_merged
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_all_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_esp
http://rest.ensembl.org/#Variation
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache_version
http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_humdiv
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_esp
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pubmed
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#convert
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
http://en.wikipedia.org/wiki/Percent-encoding
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_allele_number
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_total_length
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html

Filter VEP results using filter_vep.pl

New in version 71 (April 2013)

SIFT predictions now available for Chicken, Cow, Dog, Human, Mouse, Pig, Rat and Zebrafish

View summary statistics for VEP runs in [output]_summary.html

Generate HTML output using --html

Support for simple tab-delimited format for input of structural variant data

Cache now contains clinical significance statuses from dbSNP for human variants

NOTE: VEP version numbers have now (from release 71) changed to match Ensembl release numbers.

New in version 2.8 (December 2012)

Easily filter out common human variants with --filter_common

1000 Genomes continental population frequencies now stored in cache files

New in version 2.7 (October 2012)

build VEP cache files offline from GTF and FASTA files

support for using FASTA files for sequence lookup in HGVS notations in offline/cache modes

New in version 2.6 (July 2012)

support for structural variant consequences

Sequence Ontology (SO) consequence terms now default

script runtime 3-4x faster when using forking

1000 Genomes global MAF available in cache files

improved memory usage

New in version 2.5 (May 2012)

SIFT and PolyPhen predictions now available for RefSeq transcripts

retrieve cell type-specific regulatory consequences

consequences can be retrieved based on a single individual's genotype in a VCF input file

find overlapping structural variants

Condel support removed from main script and moved to a plugin

New in version 2.4 (February 2012)

offline mode and new installer script make it easy to use the VEP without the usual dependencies

output columns configurable using the --fields flag

VCF output support expanded, can now carry all fields

output affected exon and intron numbers with --numbers

output overlapping protein domains using --domains

enhanced support for LRGs

plugins now work on variants called as intergenic

New in version 2.3 (December 2011)

add custom annotations from tabix-indexed files (BED, GFF, GTF, VCF, bigWig)

add new functionality to the VEP with user-written plugins

filter input on consequence type

New in version 2.2 (September 2011)

SIFT, PolyPhen and Condel predictions and regulatory features now accessible from the cache

support for calling consequences against RefSeq transcripts

variant identifiers (e.g. dbSNP rsIDs) and HGVS notations supported as input format

variants can now be filtered by frequency in HapMap and 1000 genomes populations

script can be used to convert files between formats (Ensembl/VCF/Pileup/HGVS to Ensembl/VCF/Pileup)

large amount of code moved to API modules to ensure consistency between web and script VEP

memory usage optimisations

VEP script moved to ensembl-tools repo

Added --canonical, --per_gene and --no_intergenic options

New in version 2.1 (June 2011)

ability to use local file cache in place of or alongside connecting to an Ensembl database

significant improvements to speed of script

whole-genome mode now default (no disadvantage for smaller datasets)

improved status output with progress bars

regulatory region consequences now reinstated and improved

modification to output file - Transcript column is now Feature, and is followed by a Feature_type column

New in version 2.0 (April 2011)

support for SIFT, PolyPhen and Condel missense predictions in human

per-allele and compound consequence types

support for Sequence Ontology (SO) and NCBI consequence terms

modified output format

https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org../vep_formats.html#stats
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_filter_common
https://www.ensembl.org../vep_formats.html#sv
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#forking
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fields
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_numbers
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_domains
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#filt
https://github.com/Ensembl/ensembl-tools/tree/release/104/scripts/variant_effect_predictor
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_canonical
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_per_gene
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_intergenic
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache

support for new output fields in Extra column

header section contains information on database and software versions

codon change shown in output

CDS position shown in output

option to output Ensembl protein identifiers

option to output HGVS nomenclature for variants

support for gzipped input files

enhanced configuration options, including the ability to read configuration from a file

verbose output now much more useful

whole-genome mode now more stable

finding existing co-located variations now ~5x faster

Requirements

VEP requires:

gcc, g++ and make

Perl version 5.10 or above recommended (tested on 5.10, 5.14, 5.18, 5.22, 5.26)

Perl packages:

Archive::Zip

DBD::mysql

DBI

See this guide for more information on how to install perl modules.
Additional libraries can be installed for extra features and enhancements but they are not required to run VEP in most of the use cases.

VEP's INSTALL.pl script will install required components of Ensembl API for you, but VEP may also be used with any pre-existing API installations you have, provided their versions match
the version of VEP you are using.

VEP has been developed for UNIX-like environments and works well on Linux (e.g. Ubuntu, Debian, Mint) and Mac OSX.
It can also be used on Windows systems with a more involved installation process.

Installation

VEP's INSTALL.pl makes it easy to set up your environment for using the VEP. It will download and configure a minimal set of the Ensembl API for use by the VEP, and can also download
cache files, FASTA files and plugins.

Run the following, and follow any prompts as they appear:

perl INSTALL.pl

Additional non-essential components and enhancements must be installed manually.

Software components installed

BioPerl

ensembl

ensembl-io

ensembl-variation

ensembl-funcgen

Bio::DB::HTS

If you already have the latest version of the API installed you do not need to run the installer, although it can be used to simply update your API version (with post-release patches applied),
and retrieve cache and FASTA files. The installer downloads the API within the VEP directory and will not affect any other Ensembl API installations.

The script will also attempt to install a Perl::XS module, Bio::DB::HTS , for rapid access to bgzipped FASTA files. If this fails, you may add the --NO_HTSLIB flag when running the installer;
VEP will fall back to using Bio::DB::Fasta for this functionality (more details).

Running the installer

The installer is run on the command line as follows:

 perl INSTALL.pl [options]

Follow on-screen prompts and note warnings of any files which will be deleted/overwritten

You should not need to add any options, but configuration of the installer is possible with the following flags:

Flag Alternate Description
--ASSEMBLY -y Assembly version to use when using --AUTO. Most species have only one assembly available on each software release; currently this is only

required for human on release 76 onwards.

--AUTO -a Run installer without prompts. Use the following options to specify parts to install:

a (API + Bio::DB::HTS/htslib)

l (Bio::DB::HTS/htslib only)

c (cache)

f (FASTA)

p (plugins) — Require the use of the --PLUGINS flag to list the plugin(s) to install.

e.g. for API and cache:

https://metacpan.org/pod/Archive::Zip
https://metacpan.org/pod/DBD::mysql
https://metacpan.org/pod/DBI
http://www.cpan.org/modules/INSTALL.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://github.com/bioperl/bioperl-live
https://github.com/Ensembl/ensembl
https://github.com/Ensembl/ensembl-io
https://github.com/Ensembl/ensembl-variation
https://github.com/Ensembl/ensembl-funcgen
https://github.com/Ensembl/Bio-DB-HTS
https://github.com/Ensembl/Bio-HTS
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly

perl INSTALL.pl --AUTO ac

--CACHE_VERSION [version] By default the installer will download the latest version of VEP caches and FASTA files (currently 104). You can force the script to install a
different version, but there is no guarantee that a version of the API will be compatible with a different version of the cache.

--CACHEDIR [dir] -c By default the script will install the cache files in the ".vep" subdirectory in your home area. This option configures where cache files are
installed.

The --dir_cache flag must be passed when running the VEP if a non-default cache directory is given:

./vep --dir_cache [dir]

--DESTDIR [dir] -d By default the script will install the API modules in a subdirectory of the current directory named "Bio". Using this option you can configure
where the Bio directory is created. If something other than the default is used, this directory must either be added to your PERL5LIB
environment variable when running the VEP, or included using perl's -I flag:

perl -I [dir] vep

--NO_HTSLIB -l Don't attempt to install Bio::DB::HTS/htslib

--NO_TEST Don't run API tests - useful if you know a harmless failure will prevent continuation of the installer

--NO_UPDATE -n By default the script will check for new versions or updates of the VEP. Using this option will skip this check.

--PLUGINS -g Comma-separated list of plugins to install when using --AUTO. To install all available plugins, use --PLUGINS all.

List the available plugins:
perl INSTALL.pl -a p --PLUGINS list
Download/install all the available plugins:
perl INSTALL.pl -a p --PLUGINS all
Download/install a defined list of plugins, e.g.:
perl INSTALL.pl -a p --PLUGINS dbNSFP,CADD,G2P

--PLUGINSDIR [dir] -r By default the script will install the plugins files in the "Plugins" subdirectory of the --CACHEDIR directory. This option configures where the
plugins files are installed.

The --dir_plugins flag must be passed when running the VEP if a non-default plugins directory is given:

./vep --dir_plugins [dir]

--PREFER_BIN -p Use this if the installer fails with out of memory errors.

--SPECIES -s Comma-separated list of species to install when using --AUTO. To install the RefSeq cache, add "_refseq" to the species name, e.g.
"homo_sapiens_refseq", or "_merged" to install the merged Ensembl/RefSeq cache. Remember to use --refseq or --merged when running the
VEP with the relevant cache!

--QUIET -q Don't write any status output when using --AUTO.

Additional components

INSTALL.pl will set up the minimum requirements for VEP. Some features and enhancements, however, require the installation of additional components. Most are perl modules that are easily
installed using cpanm; see this guide for more information on how to install perl modules.

Typically, you will use cpanm to install modules locally in your home directories; this shows how to set up a path for perl modules and install one there:

mkdir -p $HOME/cpanm
export PERL5LIB=$PERL5LIB:$HOME/cpanm/lib/perl5
cpanm -l $HOME/cpanm Set::IntervalTree

To make the change to PERL5LIB permanent, it is recommended to add the export line to your $HOME/.bashrc or $HOME/.profile.

Additional features

JSON - required to produce JSON format output

Set::IntervalTree - used to find overlaps between entities in coordinate space. Required to use --nearest

Bio::DB::BigFile - required to use bigWig format custom annotation files. See Bio::DB::BigFile instructions.

Speed enhancements - these modules can improve VEP runtime

PerlIO::gzip - marginal gains in compressed file parsing as used by VEP cache

ensembl-xs - provides pre-compiled replacements for frequently used routines in VEP. Requires manual installation, see README for details

Bio::DB::BigFile

In order for VEP to be able to access bigWig format custom annotation files, the Bio::DB::BigFile perl module is required. Installation involves downloading and compiling the kent source
tree . The current version of the kent source tree does not work correctly with Bio::DB::BigFile, so it is necessary to install an archive version known to work (v335).

1. Download and unpack the kent source tree

wget https://github.com/ucscGenomeBrowser/kent/archive/v335_base.tar.gz
tar xzf v335_base.tar.gz

2. Set up some environment variables; these are required only temporarily for this installation process

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir_plugins
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_merged
http://www.cpan.org/modules/INSTALL.html
http://search.cpan.org/dist/JSON/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_json
http://search.cpan.org/~benbooth/Set-IntervalTree/lib/Set/IntervalTree.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_nearest
http://search.cpan.org/~lds/Bio-BigFile-1.07/lib/Bio/DB/BigFile.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
http://search.cpan.org/~nwclark/PerlIO-gzip-0.19/gzip.pm
https://github.com/Ensembl/ensembl-xs
https://github.com/Ensembl/ensembl-xs
https://github.com/ucscGenomeBrowser/kent

export KENT_SRC=$PWD/kent-335_base/src
export MACHTYPE=$(uname -m)
export CFLAGS="-fPIC"
export MYSQLINC=`mysql_config --include | sed -e 's/^-I//g'`
export MYSQLLIBS=`mysql_config --libs`

3. Modify kent build parameters

cd $KENT_SRC/lib
echo 'CFLAGS="-fPIC"' > ../inc/localEnvironment.mk

4. Build kent source

make clean && make
cd ../jkOwnLib
make clean && make

If either of these steps fail, you may have some missing dependencies. Known common missing dependencies are libpng and libssl; these may be installed, for example, with apt-get
on Ubuntu. If you do not have sudo access you may have to ask your sysadmin to install any missing dependencies.

sudo apt-get install libpng-dev libssl-dev

On Mac OSX you may use brew ; the openssl libraries also need to be symbolically linked to a different path:

brew install libpng openssl
cd /usr/local/include
ln -s ../opt/openssl/include/openssl .
cd -

5. On some systems (e.g. Mac OSX), a compiled file is placed in a path that Bio::DB::BigFile cannot find. You can correct this with:

ln -s $KENT_SRC/lib/x86_64/* $KENT_SRC/lib/

6. We'll now use cpanm to install the perl module for Bio::DB::BigFile itself. See above for guidance on this. In this example we're going to install the module to a path within your home
directory. In order to do this we must modify the paths that perl looks in to find modules by adding to the PERL5LIB environment module. To make this change permanent you must add
the export line to your $HOME/.bashrc or $HOME/.profile.

mkdir -p $HOME/cpanm
export PERL5LIB=$PERL5LIB:$HOME/cpanm/lib/perl5
cpanm -l $HOME/cpanm Bio::DB::BigFile

If you are prompted for the path to the kent source tree, that means something didn't go right in the compilation above. Double check that $KENT_SRC/lib/jkweb.a exists and is not
found instead at e.g. $KENT_SRC/lib/x86_64/jkweb.a. You may copy or link the file (and the other files in that directory) to the former path.

ln -s $KENT_SRC/lib/x86_64/* $KENT_SRC/lib/

7. You should now be able to successfully run the appropriate test in the VEP package:

perl -Imodules t/AnnotationSource_File_BigWig.t

Using VEP in Mac OS

Installing VEP on Mac OS is slightly trickier than other Linux-based systems, and will require additional dependancies.
These instructions will guide you through the setup of Perlbrew, Homebrew, MySQL and other dependancies that will allow for a clean installation of VEP on your Mac OS system.

These instructions have been tested on macOS High Sierra (10.13) and macOS Sierra (10.12).
Older versions may require additional tweaks, however we shall endeavor to keep these instructions up to date for future versions of MacOS.

Prerequisite Setup

List of prerequisites: XCode, GCC, Perlbrew, Cpanm, Homebrew, mysql, DBI, DBD::mysql

XCode and GCC

VEP requires XCode and GCC for installation purposes. Fortunately, recent versions of macOS will look for (and attempt to install if required) both of these when you run the following
command:

gcc -v

Perlbrew

We recommend using Perlbrew to install a new version of Perl on your mac, to prevent messing with the vendor perl too much. This can be done with the following command:

curl -L http://install.perlbrew.pl | bash

echo 'source $HOME/perl5/perlbrew/etc/bashrc' >> ~/.bash_profile

At this point, PLEASE RESTART YOUR TERMINAL WINDOW to allow for the perlbrew changes to take effect.

We recommend installing Perl version 5.26.2 to run VEP, and installing cpanm to handle the installation of perl modules.
These steps can be completed with the commands:

perlbrew install -j 5 --as 5.26.2 --thread --64all -Duseshrplib perl-5.26.2 --notest
perlbrew switch 5.26.2
perlbrew install-cpanm

https://brew.sh/

Homebrew

This package management system for Mac OS would make the installation of the next prerequisite (i.e. xs) easier.

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

xz

VEP requires the installation of xz, a data-compression utility. The easiest way to install the xz package is through homebrew:

brew install xz

MySQL

In order to connect to the Ensembl databases, a collection of MySQL related dependancies are required. Fortunately, these can be installed neatly with Homebrew and Cpanm:

brew install mysql
cpanm DBI
cpanm DBD::mysql

Installing BioPerl

On some versions of macOS, the VEP installer fails to cleanly install BioPerl, so a manual install will prevent issues:

curl -O https://cpan.metacpan.org/authors/id/C/CJ/CJFIELDS/BioPerl-1.6.924.tar.gz
tar zxvf BioPerl-1.6.924.tar.gz
echo 'export PERL5LIB=${PERL5LIB}:##PATH_TO##/bioperl-1.6.924' >> ~/.bash_profile

where ##PATH_TO##/bioperl-1.6.924 refers to the location of the newly unzipped BioPerl directory.

Final Dependancies

Installing the following Perl modules with cpanm will allow for full VEP functionality:

cpanm Test::Differences Test::Exception Test::Perl::Critic Archive::Zip PadWalker Error Devel::Cycle Role::Tiny::With Module::Build

export DYLD_LIBRARY_PATH=/usr/local/mysql/lib/:$DYLD_LIBRARY_PATH

Installing VEP

And that should be that! You should now be able to install VEP using the installer:

git clone https://github.com/ensembl/ensembl-vep
cd ensembl-vep
perl INSTALL.pl --NO_TEST

Using VEP in Windows

VEP was developed as a command-line tool, and as a Perl script its natural environment is a Linux system. However, there are several ways you can use VEP on a Windows machine.

You may also consider using VEP's web or REST interfaces.

Virtual machines

Using a virtual machine you can run a virtual Linux system in a window on your machine. There are two ways to do this:

1. Use the Ensembl virtual machine image

2. Use Docker

Perl

If Perl is installed on Windows, VEP can be setup. However this may require installation of dependent modules. We recommend using Docker to run VEP on Windows.

1. Check Perl is installed

2. Download and unpack the zip of the ensembl-vep package

3. Open a Command Prompt (search for Command Prompt in the Start Menu)

4. Navigate to the directory where you unpacked the VEP package, e.g.

cd Downloads/ensembl-vep-release-104

5. Run INSTALL.pl with --NO_HTSLIB and --NO_TEST; you will see some warnings about the "which" command not being available (these will also appear when running VEP and can be
ignored).

perl INSTALL.pl --NO_HTSLIB --NO_TEST

Docker

Docker allows you to run applications in virtualised "containers". A docker image for VEP is available from DockerHub:

The VEP Docker image uses ubuntu:18.04 as base image.

Commands to download the VEP Docker image (need to download and install the docker client beforehand):

https://www.ensembl.org/info/data/virtual_machine.html
https://github.com/Ensembl/ensembl-vep/archive/release/104.zip
https://www.docker.com/
https://hub.docker.com/_/ubuntu
https://www.docker.com/

docker pull ensemblorg/ensembl-vep
docker run -t -i ensemblorg/ensembl-vep ./vep

Currently no volumes are pre-configured for the container; this is required if you wish to download data (e.g. cache files) that persists across sessions.

The following is a brief example showing how to use a directory on your local (host) machine to store cache data for VEP.

Create a directory on your machine:
mkdir $HOME/vep_data

Make sure that the created directory on your machine has read and write access granted
so the docker container can write in the directory (VEP output):
chmod a+rwx $HOME/vep_data

docker run -t -i -v $HOME/vep_data:/opt/vep/.vep ensemblorg/ensembl-vep

Cache and Plugins installation

You will now be prompted by the installer if you wish to re-install the API. Type "n" followed by enter to skip to cache installation. You will be presented with a list of species; type the number
for your species/assembly of interest and press enter. Your data will now download and unpack; this may take a while.

If you wish to retrieve HGVS annotations it is recommended to also download the FASTA file for your species. To do this, at the next prompt type "0" and press enter. You may skip the plugin
installation also.

The above process may also be performed in one command; for example, to set up the cache and corresponding FASTA for human GRCh38:

docker run -t -i -v $HOME/vep_data:/opt/vep/.vep ensemblorg/ensembl-vep perl INSTALL.pl -a cf -s homo_sapiens -y GRCh38

If you wish to include the VEP plugins , add the 'p' value to the -a flag and the --PLUGINS (or -g) flag as well:

The installer has now downloaded this data to $HOME/vep_data (and $HOME/vep_data/Plugins for the VEP plugins). VEP will automatically detect caches downloaded in this folder as it is
mapped to VEP's default directory within the Docker instance.

docker run -t -i -v $HOME/vep_data:/opt/vep/.vep ensemblorg/ensembl-vep
./vep -i examples/homo_sapiens_GRCh38.vcf --cache

Mounted volume - recommended data structure

i.e. VEP data structure outside the Docker container

Diagram representing a recommended data file structure for the mounted volume

Here is an example of how you can run VEP using the setup presented in the image above (providing that the cache, the dbNSFP plugin and its data file have been downloaded):

docker run -t -i -v $HOME/vep_data:/opt/vep/.vep ensemblorg/ensembl-vep

Example of VEP command line:
./vep --cache --offline --format vcf --vcf --force_overwrite \
--dir_cache /opt/vep/.vep/ \
--dir_plugins /opt/vep/.vep/Plugins/ \
--input_file /opt/vep/.vep/input/my_input.vcf \
--output_file /opt/vep/.vep/output/my_output.vcf \
--custom /opt/vep/.vep/custom/my_extra_data.bed,BED_DATA,bed,exact,1 \
--plugin dbNSFP,/opt/vep/.vep/Plugins/dbNSFP.gz,ALL

Install all the available plugins:
docker run -t -i -v $HOME/vep_data:/opt/vep/.vep ensemblorg/ensembl-vep perl INSTALL.pl -a cfp -s homo_sapiens -y GRCh38 -g all
or install a defined list of plugins:
docker run -t -i -v $HOME/vep_data:/opt/vep/.vep ensemblorg/ensembl-vep perl INSTALL.pl -a cfp -s homo_sapiens -y GRCh38 -g dbNSFP,CADD,G2P

https://docs.docker.com/engine/tutorials/dockervolumes/
https://github.com/Ensembl/VEP_plugins

Update from a previous version

1. Update your docker container

2. Update your cache

Install the new cache through the VEP INSTALL.pl script (see "Cache installation" section above)
docker run -t -i -v $HOME/vep_data:/opt/vep/.vep ensemblorg/ensembl-vep perl INSTALL.pl -a c

Or you can install the cache manually
cd $HOME/vep_data
curl -O http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/vep/homo_sapiens_vep_104_GRCh38.tar.gz
tar xzf homo_sapiens_vep_104_GRCh38.tar.gz

List containers
docker ps -a
e.g.
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d64055ffe9e9 ensemblorg/ensembl-vep "/bin/bash" About a minute ago Exited (0) 59 seconds ago tender

Stop and remove old container
docker stop tender_ritchie
docker rm tender_ritchie

Update the container
docker pull ensemblorg/ensembl-vep

Variant Effect Predictor Data formats

Input

Both the web and script version of VEP can use the same input formats. Formats can be auto-detected by the VEP script, but must be manually selected when using the web interface.

VEP can use different input formats:

Default VEP input

VCF

VCF - Structural variants

HGVS identifiers

Variant identifiers

Genomic SPDI notation

REST-style regions

Default VEP input

The default format is a simple whitespace-separated format (columns may be separated by space or tab characters), containing five required columns plus an optional identifier column:

1. chromosome - just the name or number, with no 'chr' prefix

2. start

3. end

4. allele - pair of alleles separated by a '/', with the reference allele first

5. strand - defined as + (forward) or - (reverse).

6. identifier - this identifier will be used in VEP's output. If not provided, VEP will construct an identifier from the given coordinates and alleles.

1 881907 881906 -/C +
5 140532 140532 T/C +
12 1017956 1017956 T/A +
2 946507 946507 G/C +
14 19584687 19584687 C/T -
19 66520 66520 G/A + var1
8 150029 150029 A/T + var2

An insertion (of any size) is indicated by start coordinate = end coordinate + 1. For example, an insertion of 'C' between nucleotides 12600 and 12601 on the forward strand of chromosome 8
is indicated as follows:

8 12601 12600 -/C +

A deletion is indicated by the exact nucleotide coordinates. For example, a three base pair deletion of nucleotides 12600, 12601, and 12602 of the reverse strand of chromosome 8 will be:

8 12600 12602 CGT/- -

VCF

VEP also supports using VCF (Variant Call Format) version 4.0 . This is a common format used by the 1000 genomes project, and can be produced as an output format by many variant
calling tools.

Users using VCF should note a peculiarity in the difference between how Ensembl and VCF describe unbalanced variants. For any unbalanced variant (i.e. insertion, deletion or unbalanced
substitution), the VCF specification requires that the base immediately before the variant should be included in both the reference and variant alleles. This also affects the reported position i.e.
the reported position will be one base before the actual site of the variant.

In order to parse this correctly, VEP needs to convert such variants into Ensembl-type coordinates, and it does this by removing the additional base and adjusting the coordinates accordingly.
This means that if an identifier is not supplied for a variant (in the 3rd column of the VCF), then the identifier constructed and the position reported in VEP's output file will differ from the input.

This problem can be overcome with the following:

1. ensuring each variant has a unique identifier specified in the 3rd column of the VCF

2. using VCF format as output (--vcf) - this preserves the formatting of your input coordinates and alleles

3. using --minimal and --allele_number (see Complex VCF entries).

The following examples illustrate how VCF describes a variant and how it is handled internally by VEP. Consider the following aligned sequences (for the purposes of discussion on
chromosome 20):

Ref: a t C g a // C is the reference base
1 : a t G g a // C base is a G in individual 1
2 : a t - g a // C base is deleted w.r.t. the reference in individual 2
3 : a t CAg a // A base is inserted w.r.t. the reference sequence in individual 3

Individual 1

The first individual shows a simple balanced substitution of G for C at base 3. This is described in a compatible manner in VCF and Ensembl styles. Firstly, in VCF:

20 3 . C G . PASS .

And in Ensembl format:

 20 3 3 C/G +

http://www.1000genomes.org/wiki/Analysis/vcf4.0
https://www.ensembl.orgscript/vep_options.html#opt_vcf
https://www.ensembl.orgscript/vep_options.html#opt_minimal
https://www.ensembl.orgscript/vep_options.html#opt_allele_number

Individual 2

The second individual has the 3rd base deleted relative to the reference. In VCF, both the reference and variant allele columns must include the preceding base (T) and the reported position
is that of the preceding base:

20 2 . TC T . PASS .

In Ensembl format, the preceding base is not included, and the start/end coordinates represent the region of the sequence deleted. A "-" character is used to indicate that the base is deleted
in the variant sequence:

20 3 3 C/- +

The upshot of this is that while in the VCF input file the position of the variant is reported as 2, in the output file from VEP the position will be reported as 3. If no identifier is provided in the
third column of the VCF, then the constructed identifier will be:

20_3_C/-

Individual 3

The third individual has an "A" inserted between the 3rd and 4th bases of the sequence relative to the reference. In VCF, as for the deletion, the base before the insertion is included in both
the reference and variant allele columns, and the reported position is that of the preceding base:

20 3 . C CA . PASS .

In Ensembl format, again the preceding base is not included, and the start/end positions are "swapped" to indicate that this is an insertion. Similarly to a deletion, a "-" is used to indicate no
sequence in the reference:

 20 4 3 -/A +

Again, the output will appear different, and the constructed identifier may not be what is expected:

20_3_-/A

Using VCF format output, or adding unique identifiers to the input (in the third VCF column), can mitigate this issue.

Complex VCF entries

For VCF entries with multiple alternate alleles, VEP will only trim the leading base from alleles if all REF and ALT alleles start with the same base:

20 3 . C CAAG,CAAGAAG . PASS .

This will be considered internally by VEP as equivalent to:

20 4 3 -/AAG/AAGAAG +

Now consider the case where a single VCF line contains a representation of both a SNV and an insertion:

20 3 . C CAAAG,G . PASS .

Here the input alleles will remain unchanged, and VEP will consider the first REF/ALT pair as a substitution of C for CAAG, and the second as a C/G SNV:

20 3 3 C/CAAG/G +

To modify this behaviour, VEP script users may use --minimal. This flag forces VEP to consider each REF/ALT pair independently, trimming identical leading and trailing bases from each as
appropriate. Since this can lead to confusing output regarding coordinates etc, it is not the default behaviour. It is recommended to use the --allele_number flag to track the correspondence
between alleles as input and how they appear in the output.

VCF - Structural variants

VEP can also call consequences on structural variants encoded in tab-delimited or VCF format. To recognise a variant as a structural variant, the allele string (or "SVTYPE" INFO field in VCF)
must be set to one of the currently recognised values:

INS - insertion

DEL - deletion

DUP - duplication

TDUP - tandem duplication

Examples of structural variants encoded in tab-delimited format:

1 160283 471362 DUP + sv1
1 1385015 1387562 DEL + sv2

Examples of structural variants encoded in VCF format:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
1 160283 sv1 . <DUP> . . SVTYPE=DUP;END=471362 .
1 1385015 sv2 . . . SVTYPE=DEL;END=1387562 .

See the VCF definition document for more detail on how to describe structural variants in VCF format.

https://www.ensembl.orgscript/vep_options.html#opt_minimal
https://www.ensembl.orgscript/vep_options.html#opt_allele_number
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/VCF%20%28Variant%20Call%20Format%29%20version%204.0/encoding-structural-variants

HGVS identifiers

See https://varnomen.hgvs.org for details. These must be relative to genomic or Ensembl transcript coordinates.

It also is possible to use RefSeq transcripts in both the web interface and the VEP script (see script documentation): this works for RefSeq transcripts that align to the genome correctly.

Examples:

ENST00000207771.3:c.344+626A>T
ENST00000471631.1:c.28_33delTCGCGG
ENST00000285667.3:c.1047_1048insC
5:g.140532T>C

Examples using RefSeq identifiers (using --refseq in the VEP script, or select the otherfeatures transcript database on the web interface and input type of HGVS):

NM_153681.2:c.7C>T
NM_005239.4:c.190G>A
NM_001025204.1:c.336G>A

HGVS protein notations may also be used, provided that they unambiguously map to a single genomic change. Due to redundancy in the amino acid code, it is not always possible to work out
the corresponding genomic sequence change for a given protein sequence change. The following example is for a permissable protein notation in dog (Canis familiaris):

ENSCAFP00000040171.1:p.Thr92Asn

HGVS notations may also be given in LRG coordinates:

LRG_1t1:c.841G>T
LRG_1:g.10006G>T

Variant identifiers

These should be e.g. dbSNP rsIDs, or any synonym for a variant present in the Ensembl Variation database. See here for a list of identifier sources in Ensembl.

Genomic SPDI notation

VEP can also support genomic SPDI notation which uses four fields delimited by colons S:P:D:I (Sequence:Position:Deletion:Insertion). See here for details.

Examples:

NC_000016.10:68684738:G:A
NC_000017.11:43092199:GCTTTT:
NC_000013.11:32315789::C
NC_000016.10:68644746:AA:GTA
16:68684738:2:AC

REST-style regions

VEP's region REST endoint requires variants are described as [chr]:[start]-[end]:[strand]/[allele]. This follows the same conventions as the default input format described
above, with the key difference being that this format does not require the reference (REF) allele to be included; VEP will look up the reference allele using either a provided FASTA file
(preferred) or Ensembl core database. Strand is optional and defaults to 1 (forward strand).

SNP
5:140532-140532:1/C

SNP (reverse strand)
14:19584687-19584687:-1/T

insertion
1:881907-881906:1/C

5bp deletion
2:946507-946511:1/-

Output

VEP can return the results in different formats:

Default VEP output

Tab-delimited output

VCF

JSON output

Along with the results VEP computes and returns some statistics.

http://varnomen.hgvs.org/
https://www.ensembl.orgscript/vep_other.html#hgvs
https://www.ensembl.orgscript/vep_options.html#opt_refseq
https://www.lrg-sequence.org/
https://www.ensembl.org/info/genome/variation/species/sources_documentation.html
https://www.ncbi.nlm.nih.gov/variation/notation/

Default VEP output

The default output format ("VEP" format when downloading from the web interface) is a 14 column tab-delimited file. Empty values are denoted by '-'. The output columns are:

1. Uploaded variation - as chromosome_start_alleles

2. Location - in standard coordinate format (chr:start or chr:start-end)

3. Allele - the variant allele used to calculate the consequence

4. Gene - Ensembl stable ID of affected gene

5. Feature - Ensembl stable ID of feature

6. Feature type - type of feature. Currently one of Transcript, RegulatoryFeature, MotifFeature.

7. Consequence - consequence type of this variant

8. Position in cDNA - relative position of base pair in cDNA sequence

9. Position in CDS - relative position of base pair in coding sequence

10. Position in protein - relative position of amino acid in protein

11. Amino acid change - only given if the variant affects the protein-coding sequence

12. Codon change - the alternative codons with the variant base in upper case

13. Co-located variation - known identifier of existing variant

14. Extra - this column contains extra information as key=value pairs separated by ";", see below.

Other output fields:

REF_ALLELE - the reference allele

IMPACT - the impact modifier for the consequence type

VARIANT_CLASS - Sequence Ontology variant class

SYMBOL - the gene symbol

SYMBOL_SOURCE - the source of the gene symbol

STRAND - the DNA strand (1 or -1) on which the transcript/feature lies

ENSP - the Ensembl protein identifier of the affected transcript

FLAGS - transcript quality flags:

cds_start_NF: CDS 5' incomplete

cds_end_NF: CDS 3' incomplete

SWISSPROT - Best match UniProtKB/Swiss-Prot accession of protein product

TREMBL - Best match UniProtKB/TrEMBL accession of protein product

UNIPARC - Best match UniParc accession of protein product

HGVSc - the HGVS coding sequence name

HGVSp - the HGVS protein sequence name

HGVSg - the HGVS genomic sequence name

HGVS_OFFSET - Indicates by how many bases the HGVS notations for this variant have been shifted

NEAREST - Identifier(s) of nearest transcription start site

SIFT - the SIFT prediction and/or score, with both given as prediction(score)

PolyPhen - the PolyPhen prediction and/or score

MOTIF_NAME - the source and identifier of a transcription factor binding profile aligned at this position

MOTIF_POS - The relative position of the variation in the aligned TFBP

HIGH_INF_POS - a flag indicating if the variant falls in a high information position of a transcription factor binding profile (TFBP)

MOTIF_SCORE_CHANGE - The difference in motif score of the reference and variant sequences for the TFBP

CELL_TYPE - List of cell types and classifications for regulatory feature

CANONICAL - a flag indicating if the transcript is denoted as the canonical transcript for this gene

CCDS - the CCDS identifer for this transcript, where applicable

INTRON - the intron number (out of total number)

EXON - the exon number (out of total number)

DOMAINS - the source and identifer of any overlapping protein domains

DISTANCE - Shortest distance from variant to transcript

IND - individual name

ZYG - zygosity of individual genotype at this locus

SV - IDs of overlapping structural variants

FREQS - Frequencies of overlapping variants used in filtering

AF - Frequency of existing variant in 1000 Genomes

AFR_AF - Frequency of existing variant in 1000 Genomes combined African population

AMR_AF - Frequency of existing variant in 1000 Genomes combined American population

ASN_AF - Frequency of existing variant in 1000 Genomes combined Asian population

EUR_AF - Frequency of existing variant in 1000 Genomes combined European population

EAS_AF - Frequency of existing variant in 1000 Genomes combined East Asian population

SAS_AF - Frequency of existing variant in 1000 Genomes combined South Asian population

AA_AF - Frequency of existing variant in NHLBI-ESP African American population

EA_AF - Frequency of existing variant in NHLBI-ESP European American population

gnomAD_AF - Frequency of existing variant in gnomAD exomes combined population

gnomAD_AFR_AF - Frequency of existing variant in gnomAD exomes African/American population

https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/genome/variation/prediction/classification.html#classes
https://www.ensembl.orgscript/vep_options.html#opt_shift_hgvs

gnomAD_AMR_AF - Frequency of existing variant in gnomAD exomes American population

gnomAD_ASJ_AF - Frequency of existing variant in gnomAD exomes Ashkenazi Jewish population

gnomAD_EAS_AF - Frequency of existing variant in gnomAD exomes East Asian population

gnomAD_FIN_AF - Frequency of existing variant in gnomAD exomes Finnish population

gnomAD_NFE_AF - Frequency of existing variant in gnomAD exomes Non-Finnish European population

gnomAD_OTH_AF - Frequency of existing variant in gnomAD exomes combined other combined populations

gnomAD_SAS_AF - Frequency of existing variant in gnomAD exomes South Asian population

MAX_AF - Maximum observed allele frequency in 1000 Genomes, ESP and gnomAD

MAX_AF_POPS - Populations in which maximum allele frequency was observed

CLIN_SIG - ClinVar clinical significance of the dbSNP variant

BIOTYPE - Biotype of transcript or regulatory feature

APPRIS - Annotates alternatively spliced transcripts as primary or alternate based on a range of computational methods. NB: not available for GRCh37

TSL - Transcript support level. NB: not available for GRCh37

PUBMED - Pubmed ID(s) of publications that cite existing variant

SOMATIC - Somatic status of existing variant(s); multiple values correspond to multiple values in the Existing_variation field

PHENO - Indicates if existing variant is associated with a phenotype, disease or trait; multiple values correspond to multiple values in the Existing_variation field

GENE_PHENO - Indicates if overlapped gene is associated with a phenotype, disease or trait

ALLELE_NUM - Allele number from input; 0 is reference, 1 is first alternate etc

MINIMISED - Alleles in this variant have been converted to minimal representation before consequence calculation

PICK - indicates if this block of consequence data was picked by --flag_pick or --flag_pick_allele

BAM_EDIT - Indicates success or failure of edit using BAM file

GIVEN_REF - Reference allele from input

USED_REF - Reference allele as used to get consequences

REFSEQ_MATCH - the RefSeq transcript match status; contains a number of flags indicating whether this RefSeq transcript matches the underlying reference sequence and/or an
Ensembl transcript (more information).

rseq_3p_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly sequence. Specifically, there is a mismatch in the 3' UTR of
the RefSeq model with respect to the primary genome assembly (e.g. GRCh37/GRCh38).

rseq_5p_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly sequence. Specifically, there is a mismatch in the 5' UTR of
the RefSeq model with respect to the primary genome assembly.

rseq_cds_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly sequence. Specifically, there is a mismatch in the CDS of the
RefSeq model with respect to the primary genome assembly.

rseq_ens_match_cds: signifies that for the RefSeq transcript there is an overlapping Ensembl model that is identical across the CDS region only. A CDS match is defined as follows:
the CDS and peptide sequences are identical and the genomic coordinates of every translatable exon match. Useful related attributes are: rseq_ens_match_wt and
rseq_ens_no_match.

rseq_ens_match_wt: signifies that for the RefSeq transcript there is an overlapping Ensembl model that is identical across the whole transcript. A whole transcript match is defined as
follows: 1) In the case that both models are coding, the transcript, CDS and peptide sequences are all identical and the genomic coordinates of every exon match. 2) In the case that
both transcripts are non-coding the transcript sequences and the genomic coordinates of every exon are identical. No comparison is made between a coding and a non-coding
transcript. Useful related attributes are: rseq_ens_match_cds and rseq_ens_no_match.

rseq_ens_no_match: signifies that for the RefSeq transcript there is no overlapping Ensembl model that is identical across either the whole transcript or the CDS. This is caused by
differences between the transcript, CDS or peptide sequences or between the exon genomic coordinates. Useful related attributes are: rseq_ens_match_wt and
rseq_ens_match_cds.

rseq_mrna_match: signifies an exact match between the RefSeq transcript and the underlying primary genome assembly sequence (based on a match between the transcript stable
id and an accession in the RefSeq mRNA file). An exact match occurs when the underlying genomic sequence of the model can be perfectly aligned to the mRNA sequence post
polyA clipping.

rseq_mrna_nonmatch: signifies a non-match between the RefSeq transcript and the underlying primary genome assembly sequence. A non-match is deemed to have occurred if the
underlying genomic sequence does not have a perfect alignment to the mRNA sequence post polyA clipping. It can also signify that no comparison was possible as the model stable
id may not have had a corresponding entry in the RefSeq mRNA file (sometimes happens when accessions are retired or changed). When a non-match occurs one or several of the
following transcript attributes will also be present to provide more detail on the nature of the non-match: rseq_5p_mismatch, rseq_cds_mismatch, rseq_3p_mismatch,
rseq_nctran_mismatch, rseq_no_comparison

rseq_nctran_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly sequence. This is a comparison between the entire
underlying genomic sequence of the RefSeq model to the mRNA in the case of RefSeq models that are non-coding.

rseq_no_comparison: signifies that no alignment was carried out between the underlying primary genome assembly sequence and a corresponding RefSeq mRNA. The reason for
this is generally that no corresponding, unversioned accession was found in the RefSeq mRNA file for the transcript stable id. This sometimes happens when accessions are retired
or replaced. A second possibility is that the sequences were too long and problematic to align (though this is rare).

OverlapBP - Number of base pairs overlapping with the corresponding structural variation feature

OverlapPC - Percentage of corresponding structural variation feature overlapped by the given input

CHECK_REF - Reports variants where the input reference does not match the expected reference

AMBIGUITY - IUPAC allele ambiguity code

Example of VEP default output format:

The VEP script will also add a header to the output file. This contains information about the databases connected to, and also a key describing the key/value pairs used in the extra column.

ENSEMBL VARIANT EFFECT PREDICTOR v104.0
Output produced at 2017-03-21 14:51:27
Connected to homo_sapiens_core_104_38 on ensembldb.ensembl.org
Using cache in /homes/user/.vep/homo_sapiens/104_GRCh38
Using API version 104, DB version 104
polyphen version 2.2.2
sift version sift5.2.2
COSMIC version 78

11_224088_C/A 11:224088 A ENSG00000142082 ENST00000525319 Transcript missense_variant 742 716 239 T/N aCc/aAc
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000534381 Transcript 5_prime_UTR_variant - - - - -
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000529055 Transcript downstream_variant - - - - -
11_224585_G/A 11:224585 A ENSG00000142082 ENST00000529937 Transcript intron_variant - - - - -
22_16084370_G/A 22:16084370 A - ENSR00000615113 RegulatoryFeature regulatory_region_variant - - - - -

https://www.ensembl.orgscript/vep_options.html#opt_flag_pick
https://www.ensembl.orgscript/vep_options.html#opt_flag_pick_allele
https://www.ensembl.orgscript/vep_other.html#refseq

ESP version 20141103
gencode version GENCODE 25
genebuild version 2014-07
HGMD-PUBLIC version 20162
regbuild version 16
assembly version GRCh38.p7
ClinVar version 201610
dbSNP version 147
Column descriptions:
Uploaded_variation : Identifier of uploaded variant
Location : Location of variant in standard coordinate format (chr:start or chr:start-end)
Allele : The variant allele used to calculate the consequence
Gene : Stable ID of affected gene
Feature : Stable ID of feature
Feature_type : Type of feature - Transcript, RegulatoryFeature or MotifFeature
Consequence : Consequence type
cDNA_position : Relative position of base pair in cDNA sequence
CDS_position : Relative position of base pair in coding sequence
Protein_position : Relative position of amino acid in protein
Amino_acids : Reference and variant amino acids
Codons : Reference and variant codon sequence
Existing_variation : Identifier(s) of co-located known variants
Extra column keys:
IMPACT : Subjective impact classification of consequence type
DISTANCE : Shortest distance from variant to transcript
STRAND : Strand of the feature (1/-1)
FLAGS : Transcript quality flags

Tab-delimited output

The --tab flag instructs VEP to write output as a tab-delimited table.
This differs from the default output format in that each individual field from the "Extra" field is written to a separate tab-delimited column.
This makes the output more suitable for import into spreadsheet programs such as Excel.
Furthermore the header is the same as the one for the VEP default output format and this is also the format used when selecting the "TXT" option on the VEP web interface.

Example of VEP tab-delimited output format:

The choice and order of columns in the output may be configured using --fields. For instance:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --tab --fields "Uploaded variation,Location,Allele,Gene"

VCF output

The VEP script can also generate VCF output using the --vcf flag.

Main information about the specificity of the VEP VCF output format:

Consequences are added in the INFO field of the VCF file, using the key "CSQ" (you can change it using --vcf_info_field).

Data fields are encoded separated by the character "|" (pipe). The order of fields is written in the VCF header. Unpopulated fields are represented by an empty string.

Output fields in the "CSQ" INFO field can be configured by using --fields.

Each prediction, for a given variant, is separated by the character "," in the CSQ INFO field (e.g. when a variant overlaps more than 1 transcript)

Here is a list of the (default) fields you can find within the CSQ field:

Example of VEP command using the --vcf and --fields options:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --vcf --fields "Allele,Consequence,Feature_type,Feature"

VCFs produced by VEP can be filtered by filter_vep.pl in the same way as standard format output files.

If the input format was VCF, the file will remain unchanged save for the addition of the CSQ field and the header (unless using any filtering). If an existing CSQ field is found, it will be replaced
by the one added by the VEP (use --keep_csq to preserve it).

Custom data added with --custom are added as separate fields, using the key specified for each data file.

Commas in fields are replaced with ampersands (&) to preserve VCF format.

JSON output

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000525319 Transcript missense_variant 742
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000534381 Transcript downstream_gene_variant -
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000529055 Transcript downstream_gene_variant -
11_224585_G/A 11:224585 A ENSG00000142082 ENST00000529937 Transcript intron_variant,NMD_transcript_variant -

Allele|Consequence|IMPACT|SYMBOL|Gene|Feature_type|Feature|BIOTYPE|EXON|INTRON|HGVSc|HGVSp|cDNA_position|CDS_position|Protein_position|Amino

##INFO=<ID=CSQ,Number=.,Type=String,Description="Consequence annotations from Ensembl VEP. Format: Allele|Consequence|IMPACT|SYMBOL|Gene|Fea
#CHROM POS ID REF ALT QUAL FILTER INFO
21 26978790 rs75377686 T C . . CSQ=C|missense_variant|MODERATE|MRPL39|ENSG00000154719|Transcript|ENST00000419219|prot

https://www.ensembl.orgscript/vep_options.html#opt_tab
https://www.ensembl.orgscript/vep_options.html#opt_fields
https://www.ensembl.orgscript/vep_options.html#opt_vcf
https://www.ensembl.orgscript/vep_options.html#opt_vcf_info_field
https://www.ensembl.orgscript/vep_options.html#opt_fields
https://www.ensembl.orgscript/vep_options.html#opt_vcf
https://www.ensembl.orgscript/vep_options.html#opt_fields
https://www.ensembl.orgscript/vep_filter.html
https://www.ensembl.orgscript/vep_options.html#opt_keep_csq
https://www.ensembl.orgscript/vep_options.html#opt_custom

VEP can produce output in the form of serialised JSON objects using the --json flag. JSON is a serialisation format that can be parsed and processed easily by many packages and
programming languages; it is used as the default output format for Ensembl's REST server .

Each input variant is reported as a single JSON object which constitutes one line of the output file. The JSON object is structured somewhat differently to the other VEP output formats, in that
per-variant fields (e.g. co-located existing variant details) are reported only once. Consequences are grouped under the feature type that they affect (Transcript, Regulatory Feature, etc). The
original input line (e.g. from VCF input) is reported under the "input" key in order to aid aligning input with output. When using a cache file, frequencies for co-located variants are reported by
default (see --af_1kg, --af_esp, --af_gnomad, --af_exac).

Here follows an example of JSON output (prettified and redacted for display here):

{
 "input": "1 1918090 test1 A G . . .",
 "id": "test1",
 "seq_region_name": "1",
 "start": 1918090,
 "end": 1918090,
 "strand": 1,
 "allele_string": "A/G",
 "most_severe_consequence": "missense_variant",
 "colocated_variants": [
 {
 "id": "COSV57068665",
 "seq_region_name": "1",
 "start": 1918090,
 "end": 1918090,
 "strand": 1,
 "allele_string": "COSMIC_MUTATION"
 },
 {
 "id": "rs28640257",
 "seq_region_name": "1",
 "start": 1918090,
 "end": 1918090,
 "strand": 1,
 "allele_string": "A/G/T",
 "minor_allele": "G",
 "minor_allele_freq": 0.352,
 "frequencies": {
 "G": {
 "amr": 0.5072,
 "gnomad_sas": 0.369,
 "gnomad": 0.4541,
 "ea": 0.4986,
 "gnomad_oth": 0.4611,
 "gnomad_asj": 0.3909,
 "gnomad_nfe": 0.4944,
 "aa": 0.1207,
 "gnomad_afr": 0.103,
 "afr": 0.053,
 "gnomad_amr": 0.5641,
 "gnomad_fin": 0.474,
 "sas": 0.3906,
 "gnomad_eas": 0.4598,
 "eur": 0.4901,
 "eas": 0.4623
 }
 }
 }
],
 "transcript_consequences": [
 {
 "variant_allele": "G",
 "consequence_terms": [
 "missense_variant"
],
 "gene_id": "ENSG00000178821",
 "transcript_id": "ENST00000310991",
 "strand": -1,
 "cdna_start": 436,
 "cdna_end": 436,
 "cds_start": 422,
 "cds_end": 422,
 "protein_start": 141,
 "protein_end": 141,
 "codons": "aTg/aCg",
 "amino_acids": "M/T",
 "polyphen_prediction": "benign",
 "polyphen_score": 0.001,
 "sift_prediction": "tolerated",
 "sift_score": 0.22,
 "hgvsp": "ENSP00000311122.3:p.Met141Thr",
 "hgvsc": "ENST00000310991.8:c.422T>C"
 }
],
 "regulatory_feature_consequences": [
 {
 "variant_allele": "G",
 "consequence_terms": [
 "regulatory_region_variant"
],
 "regulatory_feature_id": "ENSR00000000255"
 }
]
}

In accordance with JSON conventions, all keys (except alleles) are lower-case. Some keys also have different names and structures to those found in the other VEP output formats:

http://json.org/
https://www.ensembl.orgscript/vep_options.html#opt_json
http://rest.ensembl.org/
https://www.ensembl.org./script/vep_options.html#opt_af_1kg
https://www.ensembl.org./script/vep_options.html#opt_af_esp
https://www.ensembl.org./script/vep_options.html#opt_af_gnomad
https://www.ensembl.org./script/vep_options.html#opt_af_exac

General statistics

Summary of called consequence
types Distribution of variants across

chromosomes

Key JSON equivalent(s) Notes

Consequence consequence_terms

Gene gene_id

Feature transcript_id,
regulatory_feature_id,
motif_feature_id

Consequences are grouped under the feature type they affect

ALLELE variant_allele

SYMBOL gene_symbol

SYMBOL_SOURCE gene_symbol_source

ENSP protein_id

OverlapBP bp_overlap

OverlapPC percentage_overlap

Uploaded_variation id

Location seq_region_name, start, end,
strand

The variant's location field is broken down into constituent coordinate parts for clarity. "seq_region_name" is used in place of "chr" or
"chromosome" for consistency with other parts of Ensembl's REST API

*_maf *_allele, *_maf

cDNA_position cdna_start, cdna_end

CDS_position cds_start, cds_end

Protein_position protein_start, protein_end

SIFT sift_prediction, sift_score

PolyPhen polyphen_prediction,
polyphen_score

Statistics

VEP writes an HTML file containing statistics pertaining to the results of your job; it is named [output_file]_summary.html (with the default options the file will be named
variant_effect_output.txt_summary.html). To view it you should open the file in your web browser.

To prevent VEP writing a stats file, use the flag --no_stats. To have VEP write a machine-readable text file in place of the HTML, use --stats_text. To change the name of the stats file from the
default, use --stats_file [file].

The page contains several sections:

General statistics

This section contains two tables. The first describes the cache and/or database used, the version of VEP, species, command line parameters, input/output files and run time. The second table
contains information about the number of variants, and the number of genes, transcripts and regulatory features overlapped by the input.

Charts and tables

There then follows several charts, most with accompanying tables. Tables and charts are interactive; clicking on a row to highlight it in the table will highlight the relevant segment in the chart,
and vice versa.

https://www.ensembl.org/img/vep_stats_1.png
https://www.ensembl.org/img/vep_stats_2.png
https://www.ensembl.org/img/vep_stats_3.png
https://www.ensembl.orgscript/vep_options.html#opt_no_stats
https://www.ensembl.orgscript/vep_options.html#opt_stats_text
https://www.ensembl.orgscript/vep_options.html#opt_stats_file

 ./vep [options]

 ./vep --help

 ./vep --cache -i input.txt -o output.txt

Variant Effect Predictor Running VEP

VEP is run on the command line as follows (assuming you are in the ensembl-vep directory):

where [options] represent a set of flags and options. A basic set of flags can be listed using --help:

For optimum performance, download a cache file for your species of interest, using either the installer or by following the VEP Cache documentation, and run VEP with either the --cache
or --offline option.

It is possible to run VEP connecting to the public Ensembl database servers in place of a cache. This can be adequate when annotating small files, but the database servers can become busy
and slow. To enable this option, use --database

To run VEP with default options, use the following command:

where input.txt contains data in one of the compatible input formats and output.txt is the output file to be created.

Options can be passed as the full string (e.g. --format), or as the shortest unique string among the options (e.g. --form for --format, since there is another option --force_overwrite).

You may use one or two hypen ("-") characters before each option name; --cache or -cache.

Options can also be read from a configuration file - either passively stored as $HOME/.vep/vep.ini, or actively using --config.

Basic options

Flag Alternate Description Incompatible
with

--help Display help message and quit

--quiet -q Suppress warning messages.Not used by default --verbose

--verbose -v Print out a bit more information while running. Not used by default --quiet

--config [filename] Load configuration options from a config file. The config file should consist of whitespace-separated pairs of option
names and settings e.g.:

output_file my_output.txt
species mus_musculus
format vcf
host useastdb.ensembl.org

A config file can also be implicitly read; save the file as $HOME/.vep/vep.ini (or equivalent directory if using --dir).
Any options in this file will be overridden by those specified in a config file using --config, and in turn by any options
specified on the command line. You can create a quick version file of this by setting the flags as normal and running
VEP in verbose (-v) mode. This will output lines that can be copied to a config file that can be loaded in on the next
run using --config. Not used by default

--everything -e Shortcut flag to switch on all of the following:
--sift b, --polyphen b, --ccds, --uniprot, --hgvs, --symbol, --numbers, --domains, --regulatory, --canonical, --protein, --
biotype, --uniprot, --tsl, --appris, --gene_phenotype --af, --af_1kg, --af_esp, --af_gnomad, --max_af, --pubmed, --
var_synonyms, --variant_class, --mane

--species [species] Species for your data. This can be the latin name e.g. "homo_sapiens" or any Ensembl alias e.g. "mouse".
Specifying the latin name can speed up initial database connection as the registry does not have to load all available
database aliases on the server. Default = "homo_sapiens"

--assembly [name] -a Select the assembly version to use if more than one available. If using the cache, you must have the appropriate
assembly's cache file installed. If not specified and you have only 1 assembly version installed, this will be chosen by
default. Default = use found assembly version

--input_file [filename] -i Input file name. If not specified, VEP will attempt to read from STDIN. Can use compressed file (gzipped).

--input_data [string] --id Raw input data as a string. May be used, for example, to input a single rsID or HGVS notation quickly to vep:

--input_data rs699

--format [format] Input file format - one of "ensembl", "vcf", "hgvs", "id", "region", "spdi".
By default, VEP auto-detects the input file format. Using this option you can specify the input file is Ensembl, VCF,
IDs, HGVS, SPDI or region format. Can use compressed version (gzipped) of any file format listed above. Auto-
detects format by default

--output_file [filename] -o Output file name. Results can write to STDOUT by specifying 'STDOUT' as the output file name - this will force quiet
mode. Default = "variant_effect_output.txt"

--force_overwrite --force By default, VEP will fail with an error if the output file already exists. You can force the overwrite of the existing file by
using this flag. Not used by default

--stats_file [filename] --sf Summary stats file name. This is an HTML file containing a summary of the VEP run - the file name must end ".htm"
or ".html". Default = "variant_effect_output.txt_summary.html"

--no_stats Don't generate a stats file. Provides marginal gains in run time.

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#pre
https://www.ensembl.org../vep_formats.html#input
https://www.ensembl.org../vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_form
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_force_overwrite
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_config
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_config
https://www.ensembl.org../vep_formats.html#input
https://www.ensembl.org../vep_formats.html#stats

--stats_text Generate a plain text stats file in place of the HTML.

--warning_file [filename] File name to write warnings and errors to. Default = STDERR (standard error)

--max_sv_size Extend the maximum Structural Variant size VEP can process.

--no_check_variants_order Permit the use of unsorted input files. However running VEP on unsorted input files slows down the tool and requires
more memory.

--fork [num_forks] Enable forking, using the specified number of forks. Forking can dramatically improve runtime. Not used by default

Cache options

Flag Alternate Description Output fields Incompatible
with

--cache Enables use of the cache. Add --refseq or --merged to use the refseq or merged cache, (if
installed).

 --database

--dir [directory] Specify the base cache/plugin directory to use. Default = "$HOME/.vep/"

--dir_cache [directory] Specify the cache directory to use. Default = "$HOME/.vep/"

--dir_plugins [directory] Specify the plugin directory to use. Default = "$HOME/.vep/"

--offline Enable offline mode. No database connections will be made, and a cache file or GFF/GTF file
is required for annotation. Add --refseq to use the refseq cache (if installed). Not used by
default

 --database
--check_svs

--fasta [file|dir] --fa Specify a FASTA file or a directory containing FASTA files to use to look up reference
sequence. The first time you run VEP with this parameter an index will be built which can take
a few minutes. This is required if fetching HGVS annotations (--hgvs) or checking reference
sequences (--check_ref) in offline mode (--offline), and optional with some performance
increase in cache mode (--cache). See documentation for more details. Not used by default

--refseq Specify this option if you have installed the RefSeq cache in order for VEP to pick up the
alternate cache directory. This cache contains transcript objects corresponding to RefSeq
transcripts. Consequence output will be given relative to these transcripts in place of the
default Ensembl transcripts (see documentation)

REFSEQ_MATCH,
BAM_EDIT

--gencode_basic
--merged

--merged Use the merged Ensembl and RefSeq cache. Consequences are flagged with the SOURCE
of each transcript used.

REFSEQ_MATCH,
BAM_EDIT,
SOURCE

--refseq

--cache_version Use a different cache version than the assumed default (the VEP version). This should be
used with Ensembl Genomes caches since their version numbers do not match Ensembl
versions. For example, the VEP/Ensembl version may be 88 and the Ensembl Genomes
version 35. Not used by default

--show_cache_info Show source version information for selected cache and quit

--buffer_size [number] Sets the internal buffer size, corresponding to the number of variants that are read in to
memory simultaneously. Set this lower to use less memory at the expense of longer run time,
and higher to use more memory with a faster run time. Default = 5000

Other annotation sources

Flag Alternate Description Output fields
--plugin [plugin name] Use named plugin. Plugin modules should be installed in the Plugins subdirectory of the VEP cache

directory (defaults to $HOME/.vep/). Multiple plugins can be used by supplying the --plugin flag multiple
times. See plugin documentation. Not used by default

Plugin-dependent

--custom [filename] Add custom annotation to the output. Files must be tabix indexed or in the bigWig format. Multiple files
can be specified by supplying the --custom flag multiple times. See here for full details. Not used by
default

SOURCE, Custom file
dependent

--gff [filename] Use GFF transcript annotations in [filename] as an annotation source. Requires a FASTA file of
genomic sequence.Not used by default

SOURCE

--gtf [filename] Use GTF transcript annotations in [filename] as an annotation source. Requires a FASTA file of
genomic sequence.Not used by default

SOURCE

--bam [filename] ADVANCED Use BAM file of sequence alignments to correct transcript models not derived from
reference genome sequence. Used to correct RefSeq transcript models. Enables --use_transcript_ref;
add --use_given_ref to override this behaviour. Not used by default

BAM_EDIT

--use_transcript_ref By default VEP uses the reference allele provided in the input file to calculate consequences for the
provided alternate allele(s). Use this flag to force VEP to replace the provided reference allele with
sequence derived from the overlapped transcript. This is especially relevant when using the RefSeq
cache, see documentation for more details. The GIVEN_REF and USED_REF fields are set in the
output to indicate any change. Not used by default

GIVEN_REF, USED_REF

--use_given_ref Using --bam or a BAM-edited RefSeq cache by default enables --use_transcript_ref; add this flag to
override this behaviour and use the provided reference allele from the input. Not used by default

--custom_multi_allelic By default, comma separated lists found within the INFO field of custom annotation VCFs are assumed
to be allele specific. For example, a variant with allele_string A/G/C with associated custom annotation
'single,double,triple' will associate triple with C, double with G and single with A. This flag instructs VEP
to return all annotations for all alleles. Not used by default

https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#faster
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_plugin
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq_bam
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq_bam
https://www.ensembl.org../vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq_bam

Output format options

Flag Alternate Description Output fields Incompatible
with

--vcf Writes output in VCF format. Consequences are added in the INFO field of the VCF file,
using the key "CSQ". Data fields are encoded separated by "|"; the order of fields is
written in the VCF header. Output fields in the "CSQ" INFO field can be selected by using
--fields.

If the input format was VCF, the file will remain unchanged save for the addition of the
CSQ field (unless using any filtering).

Custom data added with --custom are added as separate fields, using the key specified
for each data file.

Commas in fields are replaced with ampersands (&) to preserve VCF format.

Not used by default

 --json
--tab

--tab Writes output in tab-delimited format. Not used by default --json
--vcf

--json Writes output in JSON format. Not used by default --tab
--vcf

--compress_output [gzip|bgzip] Writes output compressed using either gzip or bgzip. Not used by default

--fields [list] Configure the output format using a comma separated list of fields.
Can only be used with tab (--tab) or VCF format (--vcf) output.
For the tab format output, the selected fields may be those present in the default output
columns, or any of those that appear in the Extra column (including those added by
plugins or custom annotations) if the appropriate output is available (e.g. use --
show_ref_allele to access 'REF_ALLELE'). Output remains tab-delimited.
For the VCF format output, the selected fields are those present within the "CSQ" INFO
field.

Example of command for the tab output:

--tab --fields "Uploaded_variation,Location,Allele,Gene"

Example of command for the VCF format output:

--vcf --fields "Allele,Consequence,Feature_type,Feature"

Not used by default

--minimal Convert alleles to their most minimal representation before consequence calculation i.e.
sequence that is identical between each pair of reference and alternate alleles is trimmed
off from both ends, with coordinates adjusted accordingly.
Note this may lead to discrepancies between input coordinates and coordinates reported
by VEP relative to transcript sequences; to avoid issues, use --allele_number and/or
ensure that your input variants have unique identifiers. The MINIMISED flag is set in the
VEP output where relevant. Not used by default

MINIMISED --individual

Output options

Flag Alternate Description Output fields Incompatible
with

--variant_class Output the Sequence Ontology variant
class. Not used by default

VARIANT_CLASS

--sift [p|s|b] Species limited SIFT predicts whether an
amino acid substitution affects protein
function based on sequence homology and
the physical properties of amino acids. VEP
can output the prediction term, score or
both. Not used by default

SIFT --most_severe
--summary

--polyphen [p|s|b] Human only PolyPhen is a tool which
predicts possible impact of an amino acid
substitution on the structure and function of
a human protein using straightforward
physical and comparative considerations.
VEP can output the prediction term, score
or both. VEP uses the humVar score by
default - use --humdiv to retrieve the
humDiv score. Not used by default

PolyPhen --most_severe
--summary

--humdiv Human only Retrieve the humDiv PolyPhen
prediction instead of the default humVar.
Not used by default

PolyPhen

--nearest [transcript|gene|symbol] Retrieve the transcript or gene with the
nearest protein-coding transcription start
site (TSS) to each input variant. Use
"transcript" to retrieve the transcript stable
ID, "gene" to retrieve the gene stable ID, or
"symbol" to retrieve the gene symbol. Note
that the nearest TSS may not belong to a
transcript that overlaps the input variant,
and more than one may be reported in the

NEAREST

https://www.ensembl.org../vep_formats.html#vcfout
https://www.ensembl.org../vep_formats.html#tab
https://www.ensembl.org../vep_formats.html#json
https://www.ensembl.org../vep_formats.html#tab
https://www.ensembl.org../vep_formats.html#vcfout
https://www.ensembl.org../vep_formats.html#output
https://www.ensembl.org/info/genome/variation/prediction/classification.html#classes
http://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction

case where two are equidistant from the
input coordinates.

Currently only available when using a cache
annotation source, and requires the
Set::IntervalTree perl module.

Not used by default
--distance [bp_distance(,downstream_distance_if_different)] Modify the distance up and/or downstream

between a variant and a transcript for which
VEP will assign the upstream_gene_variant
or downstream_gene_variant
consequences. Giving one distance will
modify both up- and downstream distances;
prodiving two separated by commas will set
the up- (5') and down- (3') stream distances
respectively. Default: 5000

--overlaps Report the proportion and length of a
transcript overlapped by a structural variant
in VCF format.

--gene_phenotype Indicates if the overlapped gene is
associated with a phenotype, disease or
trait. See list of phenotype sources. Not
used by default

GENE_PHENO

--regulatory Look for overlaps with regulatory regions.
VEP can also report if a variant falls in a
high information position within a
transcription factor binding site. Output lines
have a Feature type of RegulatoryFeature
or MotifFeature. Not used by default

MOTIF_NAME,
MOTIF_POS,
HIGH_INF_POS,
MOTIF_SCORE_CHANGE

--cell_type Report only regulatory regions that are
found in the given cell type(s). Can be a
single cell type or a comma-separated list.
The functional type in each cell type is
reported under CELL_TYPE in the output.
To retrieve a list of cell types, use --cell_type
list. Not used by default

CELL_TYPE

--individual [all|ind list] Consider only alternate alleles present in
the genotypes of the specified individual(s).
May be a single individual, a comma-
separated list or "all" to assess all
individuals separately. Individual variant
combinations homozygous for the given
reference allele will not be reported. Each
individual and variant combination is given
on a separate line of output. Only works with
VCF files containing individual genotype
data; individual IDs are taken from column
headers. Not used by default

IND, ZYG --minimal

--phased Force VCF genotypes to be interpreted as
phased. For use with plugins that depend on
phased data. Not used by default

--allele_number Identify allele number from VCF input,
where 1 = first ALT allele, 2 = second ALT
allele etc. Useful when using --minimal Not
used by default

ALLELE_NUM

--show_ref_allele Adds the reference allele in the output.
Mainly useful for the VEP "default" and tab-
delimited output formats. Not used by
default

REF_ALLELE

--total_length Give cDNA, CDS and protein positions as
Position/Length. Not used by default

--numbers Adds affected exon and intron numbering to
to output. Format is Number/Total. Not used
by default

EXON, INTRON --most_severe
--summary

--no_escape Don't URI escape HGVS strings. Default =
escape

--keep_csq Don't overwrite existing CSQ entry in VCF
INFO field. Overwrites by default

--vcf_info_field [CSQ|ANN|(other)] Change the name of the INFO key that VEP
write the consequences to in its VCF output.
Use "ANN" for compatibility with other tools
such as snpEff . Default: CSQ

--terms [SO|display|NCBI] -t The type of consequence terms to output.
The Ensembl terms are described here. The
Sequence Ontology is a joint effort by
genome annotation centres to standardise
descriptions of biological sequences.
Default = "SO"

--no_headers Don't write header lines in output files.
Default = add headers

--shift_3prime [0|1] Right aligns all variants relative to their
associated transcripts prior to consequence
calculation.
An example using this option can be found
here.
Default = 0

--shift_hgvs

--shift_genomic [0|1] Right aligns all variants, including intergenic
variants, before consequence calculation

--shift_hgvs

https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#additional
https://www.ensembl.org/info/genome/variation/phenotype/sources_phenotype_documentation.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cell_type
https://www.ensembl.org../vep_formats.html#vcfout
https://www.ensembl.org../vep_formats.html#vcfout
http://snpeff.sourceforge.net/
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
http://www.sequenceontology.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#shifting

and updates the Location field.
An example using this option can be found
here.
Default = 0

--shift_length Reports the distance each variant has been
shifted when used in conjuction with --
shift_3prime

Identifiers

Flag Alternate Description Output fields Incompatible
with

--hgvs Add HGVS nomenclature based on Ensembl stable identifiers to the output. Both coding
and protein sequence names are added where appropriate. To generate HGVS identifiers
when using --cache or --offline you must use a FASTA file and --fasta. HGVS notations
given on Ensembl identifiers are versioned. Not used by default

HGVSc, HGVSp,
HGVS_OFFSET

--hgvsg Add genomic HGVS nomenclature based on the input chromosome name. To generate
HGVS identifiers when using --cache or --offline you must use a FASTA file and --fasta.
Not used by default

HGVSg

--spdi Add genomic SPDI notation. To generate SPDI when using --cache or --offline you must
use a FASTA file and --fasta. Not used by default

SPDI

--shift_hgvs [0|1] Enable or disable 3' shifting of HGVS notations. When enabled, this causes ambiguous
insertions or deletions (typically in repetetive sequence tracts) to be "shifted" to their most
3' possible coordinates (relative to the transcript sequence and strand) before the HGVS
notations are calculated; the flag HGVS_OFFSET is set to the number of bases by which
the variant has shifted, relative to the input genomic coordinates. Disabling retains the
original input coordinates of the variant. Default: 1 (shift)

--transcript_version Add version numbers to Ensembl transcript identifiers

--protein Add the Ensembl protein identifier to the output where appropriate. Not used by default ENSP --most_severe
--summary

--symbol Adds the gene symbol (e.g. HGNC) (where available) to the output. Not used by default SYMBOL,
SYMBOL_SOURCE,
HGNC_ID

--most_severe
--summary

--ccds Adds the CCDS transcript identifer (where available) to the output. Not used by default CCDS --most_severe
--summary

--uniprot Adds best match accessions for translated protein products from three UniProt -related
databases (SWISSPROT, TREMBL and UniParc) to the output. Not used by default

SWISSPROT, TREMBL,
UNIPARC

--most_severe
--summary

--tsl Adds the transcript support level for this transcript to the output. Not used by default TSL --most_severe
--summary

--appris Adds the APPRIS isoform annotation for this transcript to the output. Not used by default APPRIS --most_severe
--summary

--canonical Adds a flag indicating if the transcript is the canonical transcript for the gene. Not used by
default

CANONICAL --most_severe
--summary

--mane Adds a flag indicating if the transcript is the MANE Select or MANE Plus Clinical transcript
for the gene. Not used by default

MANE_SELECT,
MANE_PLUS_CLINICAL

--most_severe
--summary

--mane_select Adds a flag indicating if the transcript is the MANE Select transcript for the gene. Not used
by default

MANE_SELECT --most_severe
--summary

--biotype Adds the biotype of the transcript or regulatory feature. Not used by default BIOTYPE --most_severe
--summary

--domains Adds names of overlapping protein domains to output. Not used by default DOMAINS --most_severe
--summary

--xref_refseq Output aligned RefSeq mRNA identifier for transcript. Not used by default RefSeq --most_severe
--summary

--synonyms [file] Load a file of chromosome synonyms. File should be tab-delimited with the primary
identifier in column 1 and the synonym in column 2. Synonyms allow different
chromosome identifiers to be used in the input file and any annotation source (cache,
database, GFF, custom file, FASTA file). Not used by default

Co-located variants

Flag Alternate Description Output fields Incompatible
with

--check_existing Checks for the existence of known variants that are co-located with your input. By default the
alleles are compared and variants on an allele-specific basis - to compare only coordinates, use
--no_check_alleles.

Some databases may contain variants with unknown (null) alleles and these are included by
default; to exclude them use --exclude_null_alleles.

See this page for more details.

Not used by default

Existing_variation,
CLIN_SIG,
SOMATIC, PHENO

--check_svs Checks for the existence of structural variants that overlap your input. Currently requires SV --offline

https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#shifting
http://varnomen.hgvs.org/
https://www.ensembl.org/info/genome/stable_ids/index.html
http://varnomen.hgvs.org/
https://www.ncbi.nlm.nih.gov/variation/notation/
http://www.ebi.ac.uk/uniprot
https://www.ensembl.org/Help/Glossary?id=492
https://www.ensembl.org/Help/Glossary?id=521
https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated

database access. Not used by default

--clin_sig_allele [1|0] Return allele specific clinical significance. Setting this option to 0 will provide all known clinical
significance values at the given locus. Default: 1 (Provide allele-specific annotations)

CLIN_SIG

--exclude_null_alleles Do not include variants with unknown alleles when checking for co-located variants. Our human
database contains variants from HGMD and COSMIC for which the alleles are not publically
available; by default these are included when using --check_existing, use this flag to exclude
them. Not used by default

--no_check_alleles When checking for existing variants, by default VEP only reports a co-located variant if none of
the input alleles are novel. For example, if your input variant has alleles A/G, and an existing co-
located variant has alleles A/C, the co-located variant will not be reported.

Strand is also taken into account - in the same example, if the input variant has alleles T/G but
on the negative strand, then the co-located variant will be reported since its alleles match the
reverse complement of input variant.

Use this flag to disable this behaviour and compare using coordinates alone. Not used by
default

--af Add the global allele frequency (AF) from 1000 Genomes Phase 3 data for any known co-
located variant to the output. For this and all --af_* flags, the frequency reported is for the input
allele only, not necessarily the non-reference or derived allele. Not used by default

AF

--max_af Report the highest allele frequency observed in any population from 1000 genomes, ESP or
gnomAD. Not used by default

MAX_AF,
MAX_AF_POPS

--database

--af_1kg Add allele frequency from continental populations (AFR,AMR,EAS,EUR,SAS) of 1000
Genomes Phase 3 to the output. Must be used with --cache. Not used by default

AFR_AF, AMR_AF,
EAS_AF, EUR_AF,
SAS_AF

--database

--af_esp Include allele frequency from NHLBI-ESP populations. Must be used with --cache. Not used
by default

AA_AF, EA_AF --database

--af_gnomad Include allele frequency from Genome Aggregation Database (gnomAD) exome populations.
Note only data from the gnomAD exomes are included; to retrieve data from the additional
genomes data set, see this guide. Must be used with --cache Not used by default

gnomAD_AF,
gnomAD_AFR_AF,
gnomAD_AMR_AF,
gnomAD_ASJ_AF,
gnomAD_EAS_AF,
gnomAD_FIN_AF,
gnomAD_NFE_AF,
gnomAD_OTH_AF,
gnomAD_SAS_AF

--database

--af_exac Include allele frequency from ExAC project populations. Must be used with --cache. Not used
by default

ExAC_AF,
ExAC_Adj_AF,
ExAC_AFR_AF,
ExAC_AMR_AF,
ExAC_EAS_AF,
ExAC_FIN_AF,
ExAC_NFE_AF,
ExAC_OTH_AF,
ExAC_SAS_AF

--database

--pubmed Report Pubmed IDs for publications that cite existing variant. Must be used with --cache. Not
used by default

PUBMED --database

--var_synonyms Report known synonyms for co-located variants. Must be used with --cache. Not used by
default

VAR_SYNONYMS --database

--failed [0|1] When checking for co-located variants, by default VEP will exclude variants that have been
flagged as failed. Set this flag to include such variants. Default: 0 (exclude)

Filtering and QC options

NOTE: The filtering options here filter your results before they are written to your output file. Using VEP's filtering script, it is possible to filter your results after VEP has run. This way you can
retain all of the results and run multiple filter sets on the same results to find different data of interest.

Flag Alternate Description Output fields Incompatible
with

--gencode_basic Limit your analysis to transcripts belonging to the GENCODE basic set. This set has
fragmented or problematic transcripts removed. Not used by default

 --refseq

--exclude_predicted When using the RefSeq or merged cache, exclude predicted transcripts (i.e. those with
identifiers beginning with "XM_" or "XR_").

--transcript_filter ADVANCED Filter transcripts according to any arbitrary set of rules. Uses similar notation to
filter_vep.

You may filter on any key defined in the root of the transcript object; most commonly this will
be "stable_id":

--transcript_filter "stable_id match N[MR]_"

--check_ref Force VEP to check the supplied reference allele against the sequence stored in the
Ensembl Core database or supplied FASTA file. Lines that do not match are skipped. Not
used by default

 --lookup_ref

--lookup_ref Force overwrite the supplied reference allele with the sequence stored in the Ensembl Core
database or supplied FASTA file. Not used by default

 --check_ref

--dont_skip Don't skip input variants that fail validation, e.g. those that fall on unrecognised sequences.
Combining --check_ref with --dont_skip will add a CHECK_REF output field when the given
reference does not match the underlying reference sequence.

CHECK_REF

--allow_non_variant When using VCF format as input and output, by default VEP will skip non-variant lines of
input (where the ALT allele is null). Enabling this option the lines will be printed in the VCF
output with no consequence data added.

--chr [list] Select a subset of chromosomes to analyse from your file. Any data not on this chromosome

http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
http://gnomad.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
http://exac.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html

in the input will be skipped. The list can be comma separated, with "-" characters
representing an interval.
For example, to include chromosomes 1, 2, 3, 10 and X you could use --chr 1-3,10,X Not
used by default

--coding_only Only return consequences that fall in the coding regions of transcripts. Not used by default --most_severe
--summary

--no_intergenic Do not include intergenic consequences in the output. Not used by default --most_severe
--summary

--pick Pick one line or block of consequence data per variant, including transcript-specific columns.
Consequences are chosen according to the criteria described here, and the order the
criteria are applied may be customised with --pick_order. This is the best method to use if
you are interested only in one consequence per variant. Not used by default

 --most_severe
--summary

--pick_allele Like --pick, but chooses one line or block of consequence data per variant allele. Will only
differ in behaviour from --pick when the input variant has multiple alternate alleles. Not used
by default

 --most_severe
--summary

--per_gene Output only the most severe consequence per gene. The transcript selected is arbitrary if
more than one has the same predicted consequence. Uses the same ranking system as --
pick. Not used by default

--pick_allele_gene Like --pick_allele, but chooses one line or block of consequence data per variant allele and
gene combination. Not used by default

--flag_pick As per --pick, but adds the PICK flag to the chosen block of consequence data and retains
others. Not used by default

PICK --most_severe
--summary

--flag_pick_allele As per --pick_allele, but adds the PICK flag to the chosen block of consequence data and
retains others. Not used by default

PICK --most_severe
--summary

--flag_pick_allele_gene As per --pick_allele_gene, but adds the PICK flag to the chosen block of consequence data
and retains others. Not used by default

PICK

--pick_order [c1,c2,...,cN] Customise the order of criteria (and the list of criteria) applied when choosing a block of
annotation data with one of the following options: --pick, --pick_allele, --per_gene, --
pick_allele_gene, --flag_pick, --flag_pick_allele, --flag_pick_allele_gene. See this page for
the default order.
Valid criteria are: [canonical appris tsl biotype ccds rank length mane]. e.g.:

--pick --pick_order tsl,appris,rank

--most_severe Output only the most severe consequence per variant. Transcript-specific columns will be
left blank. Consequence ranks are given in this table.
To include regulatory consequences, use the --regulatory option in combination with this
flag.
Not used by default

 --appris
--biotype
--canonical
--ccds
--coding_only
--domains
--flag_pick
--flag_pick_allele
--no_intergenic
--numbers
--pick
--pick_allele
--polyphen
--protein
--sift
--summary
--symbol
--tsl
--uniprot
--xref_refseq

--summary Output only a comma-separated list of all observed consequences per variant. Transcript-
specific columns will be left blank. Not used by default

 --appris
--biotype
--canonical
--ccds
--coding_only
--domains
--flag_pick
--flag_pick_allele
--most_severe
--no_intergenic
--numbers
--pick
--pick_allele
--polyphen
--protein
--sift
--symbol
--tsl
--uniprot
--xref_refseq

--filter_common Shortcut flag for the filters below - this will exclude variants that have a co-located existing
variant with global AF > 0.01 (1%). May be modified using any of the following freq_* filters.
Not used by default

FREQS

--check_frequency Turns on frequency filtering. Use this to include or exclude variants based on the frequency FREQS

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_chr
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick_options
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences

of co-located existing variants in the Ensembl Variation database. You must also specify all
of the --freq_* flags below. Frequencies used in filtering are added to the output under the
FREQS key in the Extra field. Not used by default

--freq_pop [pop] Name of the population to use in frequency filter. This must be one of the following:

Name Description

1KG_ALL 1000 genomes combined population (global)

1KG_AFR 1000 genomes combined African population

1KG_AMR 1000 genomes combined American population

1KG_EAS 1000 genomes combined East Asian population

1KG_EUR 1000 genomes combined European population

1KG_SAS 1000 genomes combined South Asian population

AA NHLBI-ESP African American

EA NHLBI-ESP European American

gnomAD gnomAD combined population

gnomAD_AFR gnomAD African/African American population

gnomAD_AMR gnomAD Latino population

gnomAD_ASJ gnomAD Ashkenazi Jewish population

gnomAD_EAS gnomAD East Asian population

gnomAD_FIN gnomAD Finnish population

gnomAD_NFE gnomAD non-Finnish European population

gnomAD_OTH gnomAD other population

gnomAD_SAS gnomAD South Asian population

--freq_freq [freq] Allele frequency to use for filtering. Must be a float value between 0 and 1

--freq_gt_lt [gt|lt] Specify whether the frequency of the co-located variant must be greater than (gt) or less
than (lt) the value specified with --freq_freq

--freq_filter [exclude|include] Specify whether to exclude or include only variants that pass the frequency filter

Database options

Flag Alternate Description Output fields Incompatible
with

--database Enable VEP to use local or remote databases. --af_1kg
--af_esp
--af_exac
--af_gnomad
--cache
--max_af
--offline
--pubmed
--var_synonyms

--host [hostname] Manually define the database host to connect to. Users in the US may find connection and
transfer speeds quicker using our East coast mirror, useastdb.ensembl.org. Default =
"ensembldb.ensembl.org"

--user [username] -u Manually define the database username. Default = "anonymous"

--password [password] --pass Manually define the database password. Not used by default

--port [number] Manually define the database port. Default = 5306

--genomes Override the default connection settings with those for the Ensembl Genomes public MySQL
server. Required when using any of the Ensembl Genomes species. Not used by default

--is_multispecies [0|1] Some of the Ensembl Genomes databases (mainly bacteria and protists) are composed of a
collection of close species. It updates the database connection settings (i.e. the database name) if
the value is set to 1. Default: 0

--lrg Map input variants to LRG coordinates (or to chromosome coordinates if given in LRG
coordinates), and provide consequences on both LRG and chromosomal transcripts. Not used by
default

 --offline

--db_version [number] Force VEP to connect to a specific version of the Ensembl databases. Not recommended as there
may be conflicts between software and database versions. Not used by default

--registry [filename] Defining a registry file overwrites other connection settings and uses those found in the specified
registry file to connect. Not used by default

https://www.ensemblgenomes.org/
https://www.ensemblgenomes.org/

Variant Effect Predictor Annotation sources

VEP can use a variety of annotation sources to retrieve the transcript models used to predict consequence types.

Cache - a downloadable file containing all transcript models, regulatory features and variant data for a species

GFF or GTF - use transcript models defined in a tabix-indexed GFF or GTF file

Database - connect to a MySQL database server hosting Ensembl databases

Data from VCF, BED and bigWig files can also be incorporated by VEP's Custom annotation feature.

Using a cache is the most efficient way to use VEP; we would encourage you to use a cache wherever possible. Caches are easy to download and
set up using the installer. Follow the tutorial for a simple guide.

Caches

Using a cache (--cache) is the fastest and most efficient way to use VEP, as in most cases only a single initial network connection is made and most data is read from local disk. Use offline
mode to eliminate all network connections for speed and/or privacy.

Downloading caches

Ensembl creates cache files for every species for each Ensembl release. They can be automatically downloaded and configured using INSTALL.pl.

If interested in RefSeq transcripts you may download an alternate cache file (e.g. homo_sapiens_refseq), or a merged file of RefSeq and Ensembl transcripts (eg homo_sapiens_merged);
remember to specify --refseq or --merged when running VEP to use the relevant cache. See documentation for full details.

Manually downloading caches

It is also simple to download and set up caches without using the installer. By default, VEP searches for caches in $HOME/.vep; to use a different directory when running VEP, use --
dir_cache.

Indexed cache (http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/indexed_vep_cache/) - requires Bio::DB::HTS (setup by INSTALL.pl) or tabix , e.g.:

cd $HOME/.vep
curl -O http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/indexed_vep_cache/homo_sapiens_vep_104_GRCh38.tar.gz
tar xzf homo_sapiens_vep_104_GRCh38.tar.gz

Non-indexed cache (http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/vep/), e.g.:

cd $HOME/.vep
curl -O http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/vep/homo_sapiens_vep_104_GRCh38.tar.gz
tar xzf homo_sapiens_vep_104_GRCh38.tar.gz

 FTP directories by species grouping:

Ensembl: Vertebrates (indexed) | Vertebrates

Ensembl Genomes: Bacteria | Fungi | Metazoa | Plants | Protists

NB: When using Ensembl Genomes caches, you should use the --cache_version option to specify the relevant Ensembl Genomes version number as these differ from the concurrent
Ensembl/VEP version numbers.

Data in the cache

The data content of VEP caches vary by species. This table shows the contents of the default human cache files in release 104.

Source Version (GRCh38) Version (GRCh37)

Ensembl database version 104 104

Genome assembly GRCh38.p13 GRCh37.p13

GENCODE 38 19

RefSeq 2020-12-10
(GCF_000001405.39_GRCh38.p13_genomic.gff)

2020-10-26
(GCF_000001405.25_GRCh37.p13_genomic.gff)

Regulatory build 1.0 1.0

PolyPhen 2.2.2 2.2.2

SIFT 5.2.2 5.2.2

dbSNP 154 154

COSMIC 92 92

HGMD-PUBLIC 2020.4 2020.4

ClinVar 2021-01-02 2020-12

1000 Genomes Phase 3 (remapped) Phase 3

NHLBI-ESP V2-SSA137 (remapped) V2-SSA137

gnomAD r2.1.1, exomes only r2.1, exomes only

Convert with tabix

If you have Bio::DB::HTS (as set up by INSTALL.pl) or tabix installed on your system, the speed of retrieving existing co-located variants can be greatly improved by converting the cache
files using the supplied script, convert_cache.pl. This replaces the plain-text, chunked variant dumps with a single tabix-indexed file per chromosome. The script is simple to run:

perl convert_cache.pl -species [species] -version [vep_version]

https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_tutorial.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_merged
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir_cache
http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/indexed_vep_cache/
https://github.com/Ensembl/Bio-DB-HTS
https://github.com/samtools/tabix
http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/variation/vep/
http://ftp.ensemblgenomes.org/vol1/pub/viruses/current_variation/indexed_vep_cache/
http://ftp.ensemblgenomes.org/vol1/pub/viruses/current_variation/vep/
https://www.ensembl.org/bacteria/current/variation/vep/
https://www.ensembl.org/fungi/current/variation/vep/
https://www.ensembl.org/metazoa/current/variation/vep/
https://www.ensembl.org/plants/current/variation/vep/
https://www.ensembl.org/protists/current/variation/vep/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache_version
https://github.com/samtools/htslib

aberrant_processed_transcript

CDS

C_gene_segment

D_gene_segment

exon

gene

J_gene_segment

lincRNA

lincRNA_gene

miRNA

miRNA_gene

mRNA

processed_pseudogene

processed_transcript

pseudogene

pseudogenic_transcript

RNA

rRNA

rRNA_gene

snoRNA

snoRNA_gene

snRNA

snRNA_gene

supercontig

To convert all species and all versions, use "all":

perl convert_cache.pl -species all -version all

A full description of the options can be seen using --help. When complete, VEP will automatically detect the converted cache and use this in place.

Note that tabix and bgzip must be installed on your system to convert a cache. INSTALL.pl downloads these when setting up Bio::DB::HTS; to enable convert_cache.pl to find them, run:

export PATH=${PATH}:${PWD}/htslib

Data privacy and offline mode

When using the public database servers, VEP requests transcript and variation data that overlap the loci in your input file. As such, these coordinates are transmitted over the network to a
public server, which may not be appropriate for the analysis of sensitive or private data.

To run VEP in an offline mode that does not use any network connections, use the flag --offline.

The limitations described above apply absolutely when using offline mode. For example, if you specify --offline and --format id, VEP will report an error and refuse to run:

ERROR: Cannot use ID format in offline mode

All other features, including the ability to use custom annotations and plugins, are accessible in offline mode.

GFF/GTF files

VEP can use transcript annotations defined in GFF or GTF files. The files must be bgzipped and indexed with tabix and a FASTA file containing the genomic sequence is required in order to
generate transcript models.

Your GFF or GTF file must be sorted in chromosomal order. VEP does not use header lines so it is safe to remove them.

grep -v "#" data.gff | sort -k1,1 -k4,4n -k5,5n -t$'\t' | bgzip -c > data.gff.gz
tabix -p gff data.gff.gz
./vep -i input.vcf --gff data.gff.gz --fasta genome.fa.gz

You may use any number of GFF/GTF files in this way, providing they refer to the same genome. You may also use them in concert with annotations from a cache or database source;
annotations are distinguished by the SOURCE field in the VEP output.

GFF file
Example of command line with GFF, using of flag --gff :

./vep -i input.vcf --cache --gff data.gff.gz --fasta genome.fa.gz

This functionality uses VEP's custom annotation feature, and the --gff flag is a shortcut to:

--custom data.gff.gz,,gff

NOTE: You should use the longer custom annotation form if you wish to customise the name of the GFF as it appears in the SOURCE field and VEP output header.

GTF file
Example of command line with GTF, using of flag --gtf :

./vep -i input.vcf --cache --gtf data.gtf.gz --fasta genome.fa.gz

This functionality uses VEP's custom annotation feature, and the --gtf flag is a shortcut to:

--custom data.gtf.gz,,gtf

NOTE: You should use the longer custom annotation form if you wish to customise the name of the GTF as it appears in the SOURCE field and VEP output header.

GFF format expectations

VEP has been tested on GFF files generated by Ensembl and NCBI (RefSeq). Due to inconsistency in the GFF specification and adherence to it, VEP may encounter problems parsing some
GFF files. For the same reason, not all transcript biotypes defined in your GFF may be supported by VEP. VEP does not support GFF files with embedded FASTA sequence.

Column "type" (3rd column):

The following entity/feature types are supported by VEP. Lines of other types will be ignored; if this leads to an incomplete transcript model, the whole transcript model may be discarded.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://www.ensembl.org/info/website/upload/gff.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gtf
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gtf
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options

mt_gene

ncRNA

NMD_transcript_variant

primary_transcript

transcript

tRNA

VD_gene_segment

V_gene_segment

Expected parameters in the 9th column:

ID
Only required for the genes and transcripts entities.

parent/Parent
- Entities in the GFF are expected to be linked using a key named "parent" or "Parent" in the attributes (9th) column of the GFF.
- Unlinked entities (i.e. those with no parents or children) are discarded.
- Sibling entities (those that share the same parent) may have overlapping coordinates, e.g. for exon and CDS entities.

biotype
Transcripts require a Sequence Ontology biotype to be defined in order to be parsed by VEP.
The simplest way to define this is using an attribute named "biotype" on the transcript entity. Other configurations are supported in order for VEP to be able to parse GFF files from NCBI
and other sources.

Here is an example:

##gff-version 3.2.1
##sequence-region 1 1 10000
1 Ensembl gene 1000 5000 . + . ID=gene1;Name=GENE1
1 Ensembl transcript 1100 4900 . + . ID=transcript1;Name=GENE1-001;Parent=gene1;biotype=protein_coding
1 Ensembl exon 1200 1300 . + . ID=exon1;Name=GENE1-001_1;Parent=transcript1
1 Ensembl exon 1500 3000 . + . ID=exon2;Name=GENE1-001_2;Parent=transcript1
1 Ensembl exon 3500 4000 . + . ID=exon3;Name=GENE1-001_2;Parent=transcript1
1 Ensembl CDS 1300 3800 . + . ID=cds1;Name=CDS0001;Parent=transcript1

GTF format expectations

The following GTF entity types will be extracted:

cds (or CDS)

stop_codon

exon

gene

transcript

Entities are linked by an attribute named for the parent entity type e.g. exon is linked to transcript by transcript_id, transcript is linked to gene by gene_id.

Transcript biotypes are defined in attributes named "biotype", "transcript_biotype" or "transcript_type". If none of these exist, VEP will attempt to interpret the source field (2nd column) of
the GTF as the biotype.

Here is an example:

Chromosome synonyms

If the chromosome names used in your GFF/GTF differ from those used in the FASTA or your input VCF, you may see warnings like this when running VEP:

WARNING: Chromosome 21 not found in annotation sources or synonyms on line 160

To circumvent this you may provide VEP with a synonyms file. A synonym file is included in VEP's cache files, so if you have one of these for your species you can use it as follows:

./vep -i input.vcf -cache -gff data.gff.gz -fasta genome.fa.gz -synonyms ~/.vep/homo_sapiens/104_GRCh38/chr_synonyms.txt

FASTA files

By pointing VEP to a FASTA file (or directory containing several files), it is possible to retrieve reference sequence locally when using --cache or --offline. This enables VEP to retrieve HGVS
notations (--hgvs), check the reference sequence given in input data (--check_ref), and construct transcript models from a GFF or GTF file without accessing a database.

FASTA files can be set up using the installer; files set up using the installer are automatically detected by VEP when using --cache or --offline; you should not need to use --fasta to manually
specify them.

To enable this VEP uses one of two modules:

The Bio::DB::HTS Perl XS module with HTSlib. This module uses compiled C code and can access compressed (bgzipped) or uncompressed FASTA files. It is set up by the VEP
installer.

The Bio::DB::Fasta module. This may be used on systems where installation of the Bio::DB::HTS module has not been possible. It can access only uncompressed FASTA files. It is also
set up by the VEP installer and comes as part of the BioPerl package.

The first time you run VEP with a specific FASTA file, an index will be built. This can take a few minutes, depending on the size of the FASTA file and the speed of your system. On subsequent
runs the index does not need to be rebuilt (if the FASTA file has been modified, VEP will force a rebuild of the index).

 FASTA FTP directories

1 Ensembl gene 1000 5000 . + . gene_id "gene1"; gene_name "GENE1";
1 Ensembl transcript 1100 4900 . + . gene_id "gene1"; transcript_id "transcript1"; gene_name "GENE1"; transcript_name "GENE1-001"; transc
1 Ensembl exon 1200 1300 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number "exon1"; exon_id "GENE1-001_1";
1 Ensembl exon 1500 3000 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number "exon2"; exon_id "GENE1-001_2";
1 Ensembl exon 3500 4000 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number "exon3"; exon_id "GENE1-001_2";
1 Ensembl CDS 1300 3800 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number "exon2"; ccds_id "CDS0001";

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fasta
https://github.com/Ensembl/Bio-DB-HTS
http://www.htslib.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
http://search.cpan.org/~cjfields/BioPerl-1.6.924/Bio/DB/Fasta.pm

Suitable reference FASTA files are available to download from the Ensembl FTP server. See the Downloads page for details.
You should preferably use the installer as described above to fetch these files; manual instructions are provided for reference. In most cases it is best to download the single large
"primary_assembly" file for your species. You should use the unmasked (without "_rm" or "_sm" in the name) sequences.
Note that VEP requires that the file be either unzipped (Bio::DB::Fasta) or unzipped and then recompressed with bgzip (Bio::DB::HTS::Faidx) to run; when unzipped these files can be very
large (25GB for human). An example set of commands for setting up the data for human follows:

curl -O http://ftp.ensemblgenomes.org/vol1/pub/viruses/release-104/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
gzip -d Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
bgzip Homo_sapiens.GRCh38.dna.primary_assembly.fa
./vep -i input.vcf --offline --hgvs --fasta Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

Databases

VEP can use remote or local database servers to retrieve annotations.

Using --cache (without --offline) uses the local cache on disk to fetch most annotations, but allows database connections for some features (see cache limitations)

Using --database tells VEP to retrieve all annotations from the database. Please only use this for small input files or when using a local database server!

Public database servers

By default, VEP is configured to connect to the public Ensembl MySQL instance at ensembldb.ensembl.org. If you are in the USA (or geographically closer to the east coast of the USA than
to the Ensembl data centre in Cambridge, UK), a mirror server is available at useastdb.ensembl.org. To use the mirror, use the flag --host useastdb.ensembl.org

Data for Ensembl Genomes species (e.g. plants, fungi, microbes) is available through a different public MySQL server. The appropriate connection parameters can be automatically loaded by
using the flag --genomes

If you have a very small data set (100s of variants), using the public database servers should provide adequate performance. If you have larger data sets, or wish to use VEP in a batch
manner, consider one of the alternatives below.

Using a local database

It is possible to set up a local MySQL mirror with the databases for your species of interest installed. For instructions on installing a local mirror, see here. You will need a MySQL server that
you can connect to from the machine where you will run VEP (this can be the same machine). For most of the functionality of VEP, you will only need the Core database (e.g.
homo_sapiens_core_104_38) installed. In order to find co-located variants or to use SIFT or PolyPhen, it is also necessary to install the relevant variation database (e.g.
homo_sapiens_variation_104_38).

Note that unless you have custom data to insert in the database, in most cases it will be much more efficient to use a pre-built cache in place of a local database.

To connect to your mirror, you can either set the connection parameters using --host, --port, --user and --password, or use a registry file. Registry files contain all the connection parameters for
your database, as well as any species aliases you wish to set up:

use Bio::EnsEMBL::DBSQL::DBAdaptor;
use Bio::EnsEMBL::Variation::DBSQL::DBAdaptor;
use Bio::EnsEMBL::Registry;

Bio::EnsEMBL::DBSQL::DBAdaptor->new(
 '-species' => "Homo_sapiens",
 '-group' => "core",
 '-port' => 5306,
 '-host' => 'ensembldb.ensembl.org',
 '-user' => 'anonymous',
 '-pass' => '',
 '-dbname' => 'homo_sapiens_core_104_38'
);

Bio::EnsEMBL::Variation::DBSQL::DBAdaptor->new(
 '-species' => "Homo_sapiens",
 '-group' => "variation",
 '-port' => 5306,
 '-host' => 'ensembldb.ensembl.org',
 '-user' => 'anonymous',
 '-pass' => '',
 '-dbname' => 'homo_sapiens_variation_104_38'
);

Bio::EnsEMBL::Registry->add_alias("Homo_sapiens","human");

For more information on the registry and registry files, see here.

Cache - technical information

ADVANCED The cache consists of compressed files containing listrefs of serialised objects. These objects are initially created from the database as if using the Ensembl API normally. In
order to reduce the size of the cache and allow the serialisation to occur, some changes are made to the objects before they are dumped to disk. This means that they will not behave in
exactly the same way as an object retrieved from the database when writing, for example, a plugin that uses the cache.

The following hash keys are deleted from each transcript object:

analysis

created_date

dbentries : this contains the external references retrieved when calling $transcript->get_all_DBEntries(); hence this call on a cached object will return no entries

description

display_xref

edits_enabled

external_db

external_display_name

https://www.ensembl.org/info/data/ftp/index.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_host
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_genomes
https://www.ensembl.org/info/docs/webcode/mirror/install/ensembl-data.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_host
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_port
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_user
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_password
https://www.ensembl.org/info/docs/api/registry.html

external_name

external_status

is_current

modified_date

status

transcript_mapper : used to convert between genomic, cdna, cds and protein coordinates. A copy of this is cached separately by VEP as

$transcript->{_variation_effect_feature_cache}->{mapper}

As mentioned above, a special hash key "_variation_effect_feature_cache" is created on the transcript object and used to cache things used by VEP in predicting consequences, things which
might otherwise have to be fetched from the database. Some of these are stored in place of equivalent keys that are deleted as described above. The following keys and data are stored:

introns : listref of intron objects for the transcript. The adaptor, analysis, dbID, next, prev and seqname keys are stripped from each intron object

translateable_seq : as returned by

$transcript->translateable_seq

mapper : transcript mapper as described above

peptide : the translated sequence as a string, as returned by

$transcript->translate->seq

protein_features : protein domains for the transcript's translation as returned by

$transcript->translation->get_all_ProteinFeatures

Each protein feature is stripped of all keys but: start, end, analysis, hseqname

codon_table : the codon table ID used to translate the transcript, as returned by

$transcript->slice->get_all_Attributes('codon_table')->[0]

protein_function_predictions : a hashref containing the keys "sift" and "polyphen"; each one contains a protein function prediction matrix as returned by e.g.

Similarly, some further data is cached directly on the transcript object under the following keys:

_gene : gene object. This object has all keys but the following deleted: start, end, strand, stable_id

_gene_symbol : the gene symbol

_ccds : the CCDS identifier for the transcript

_refseq : the "NM" RefSeq mRNA identifier for the transcript

_protein : the Ensembl stable identifier of the translation

_source_cache : the source of the transcript object. Only defined in the merged cache (values: Ensembl, RefSeq) or when using a GFF/GTF file (value: short name or filename)

$protein_function_prediction_matrix_adaptor->fetch_by_analysis_translation_md5('sift', md5_hex($transcript-{_variation_effect_feature_ca

Variant Effect Predictor Filtering results

The VEP package includes a tool, filter_vep, to filter results files on a variety of attributes.

It operates on standard, tab-delimited or VCF formatted output (NB only VCF output produced by VEP or in the same format can be used).

Running filter_vep

Run as follows:

./vep -i in.vcf -o out.txt -cache -everything

./filter_vep -i out.txt -o out_filtered.txt -filter "[filter_text]"

filter_vep can also read from STDIN and write to STDOUT, and so may be used in a UNIX pipe:

./vep -i in.vcf -o stdout -cache -check_existing | ./filter_vep -filter "not Existing_variation" -o out.txt

The above command removes known variants from the output

Options

Flag Alternate Description
--help -h Print usage message and exit

--input_file [file] -i Specify the input file (i.e. the VEP results file). If no input file is specified, filter_vep will attempt to
read from STDIN. Input may be gzipped - to read a gzipped file use --gz

--format [format] Specify input file format:

tab (i.e. the VEP results file)

vcf

--output_file [file] -o Specify the output file to write to. If no output file is specified, the filter_vep will write to STDOUT

--force_overwrite Force an output file of the same name to be overwritten

--filter [filters] -f Add filter (see below). Multiple --filter flags may be used, and are treated as logical ANDs, i.e.
all filters must pass for a line to be printed

--soft_filter Variants not passing given filters will be flagged in the FILTER column of the VCF file, and will not
be removed from output.

--list -l List allowed fields from the input file

--count -c Print only a count of matched lines

--only_matched In VCF files, the CSQ field that contains the consequence data will often contain more than one
"block" of consequence data, where each block corresponds to a variant/feature overlap. Using --
only_matched will remove blocks that do not pass the filters. By default, filter_vep prints out the
entire VCF line if any of the blocks pass the filters.

--vcf_info_field [key] With VCF input files, by default filter_vep expects to find VEP annotations encoded in the CSQ
INFO key; VEP itself can be configured to write to a different key (with the equivalent --
vcf_info_field flag).

Use this flag to change the INFO key VEP expects to decode:
e.g. use the command "--vcf_info_field ANN" if the VEP annotations are stored in the INFO
key "ANN".

--ontology -y Use Sequence Ontology to match consequence terms. Use with operator "is" to match against
all child terms of your value. e.g. "Consequence is coding_sequence_variant" will match
missense_variant, synonymous_variant etc. Requires database connection; defaults to connecting
to ensembldb.ensembl.org. Use --host, --port, --user, --password, --version as per
vep to change connection parameters.

Writing filters

Filter strings consist of three components:

1. Field : A field name from the VEP results file. This can be any field in the "main" columns of the output, or any in the "Extra" final column. For VCF files, this is any field defined in the
"##INFO=<ID=CSQ" header. You can list available fields using --list. Field names are not case sensitive, and you may use the first few characters of a field name if they resolve uniquely
to one field name.

2. Operator : The operator defines the comparison carried out.

3. Value : The value to which the content of the field is compared. May be prefixed with "#" to represent the value of another field.

Examples:

match entries where Feature (Transcript) is "ENST00000307301"
--filter "Feature is ENST00000307301"

match entries where Protein_position is less than 10
--filter "Protein_position < 10"

match entries where Consequence contains "stream" (this will match upstream and downstream)
--filter "Consequence matches stream"

For certain fields you may only be interested in whether a value exists for that field; in this case the operator and value can be left out:

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_vcf_info_field
http://www.sequenceontology.org/

match entries where the gene symbol is defined
--filter "SYMBOL"

The value component may be another field; to represent this, prefix the name of the field to be used as a value with "#":

match entries where AFR_AF is greater than EUR_AF
--filter "AFR_AF > #EUR_AF"

Filter strings can be linked together by the logical operators "or" and "and", and inverted by prefixing with "not":

filter for missense variants in CCDS transcripts where the variant falls in a protein domain
--filter "Consequence is missense_variant and CCDS and DOMAINS"

find variants where the allele frequency is greater than 10% in either AFR or EUR populations
--filter "AFR_AF > 0.1 or EUR_AF > 0.1"

filter out known variants
--filter "not Existing_variation"

Filter logic may be constrained using parentheses, to any arbitrary level:

find variants with AF > 0.1 in AFR or EUR but not EAS or SAS
--filter "(AFR_AF > 0.1 or EUR_AF > 0.1) and (EAS_AF < 0.1 and SAS_AF < 0.1)"

For fields that contain string and number components, filter_vep will try and match the relevant part based on the operator in use. For example, using --sift b in VEP gives strings that look like
"tolerated(0.46)". This will give a match to either of the following filters:

match string part
--filter "SIFT is tolerated"

match number part
--filter "SIFT < 0.5"

Note that for numeric fields, such as the *AF allele frequency fields, filter_vep does not consider the absence of a value for that field as equivalent to a 0 value. For example, if you wish to find
rare variants by finding those where the allele frequency is less than 1% or absent, you should use the following:

--filter "AF < 0.01 or not AF"

For the Consequence field it is possible to use the Sequence Ontology to match terms ontologically; for example, to match all coding consequences (e.g. missense_variant,
synonymous_variant):

--ontology --filter "Consequence is coding_sequence_variant"

Operators

is (synonyms: = , eq) : Match exactly

get only transcript consequences
--filter "Feature_type is Transcript"

!= (synonym: ne) : Does not match exactly

filter out tolerated SIFT predictions
--filter "SIFT != tolerated"

match (synonyms: matches , re , regex) : Match string using regular expression. You may include any regular expression notation, e.g. "\d" for any numerical character

match stop_gained, stop_lost and stop_retained
--filter "Consequence match stop"

< (synonym: lt) : Less than. Note an absent value is not considered to be equivalent to 0.

find SIFT scores less than 0.1
--filter "SIFT < 0.1"

> (synonym: gt) : Greater than

find variants not in the first exon
--filter "Exon > 1"

<= (synonym: lte) : Less than or equal to. Note an absent value is not considered to be equivalent to 0.

>= (synonym: gte) : Greater than or equal to

exists (synonyms: ex , defined) : Field is defined - equivalent to using no operator and value

in : Find in list or file. Value may be either a comma-separated list or a file containing values on separate lines. Each list item is compared using the "is" operator.

find variants in a list of gene names
--filter "SYMBOL in BRCA1,BRCA2"

filter using a file of MotifFeatures
--filter "Feature in /data/files/motifs_list.txt"

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_sift
http://www.sequenceontology.org/

"bed", "gff", "gtf", "vcf" or "bigwig"

"exact" or "overlap" (if left blank, assumed to be overlap)

Variant Effect Predictor Custom annotations

VEP can integrate custom annotation from standard format files into your results by using the --custom flag.

These files may be hosted locally or remotely, with no limit to the number or size of the files. The files must be indexed using the tabix utility (BED, GFF, GTF, VCF); bigWig files contain their
own indices.

Annotations typically appear as key=value pairs in the Extra column of the VEP output; they will also appear in the INFO column if using VCF format output. The value for a particular
annotation is defined as the identifier for each feature; if not available, an identifier derived from the coordinates of the annotation is used. Annotations will appear in each line of output for the
variant where multiple lines exist.

Data formats

VEP supports the following formats:

Gene/transcript annotations

GFF : a format for describing genes and other genomic features — format specifications .

GTF : a similar format derived from GFF — format specifications.

See more documentation about GFF/GTF format requirements for VEP.
NOTE: It requires a FASTA file on the offline mode.

Variant data

VCF : a format used to describe genomic variants. VEP will use the 3rd column of the file as the identifier. INFO fields from records may be added to the VEP output.

Basic/uninterpreted data

BED : a simple tab-delimited format containing 3-12 columns of data. The first 3 columns contain the coordinates of the feature. If available, VEP will use the 4th column of the file as
the identifier of the feature.

bigWig : a format for storage of dense continuous data. VEP uses the value for the given position as the "identifier". Note that bigWig files contain their own indices, and do not
need to be indexed by tabix. Requires Bio::DB::BigFile.

Any other files can be easily converted to be compatible with VEP; the easiest format to produce is a BED-like file containing coordinates and an (optional) identifier:

chr1 10000 11000 Feature1
chr3 25000 26000 Feature2
chrX 99000 99001 Feature3

Chromosomes can be denoted by either e.g. "chr7" or "7", "chrX" or "X".

Preparing files

Custom annotation files must be prepared in a particular way in order to work with tabix and therefore with VEP. Files must be stripped of comment lines, sorted in chromosome and position
order, compressed using bgzip and finally indexed using tabix. Here are some examples of that process for:

GFF file

grep -v "#" myData.gff | sort -k1,1 -k4,4n -k5,5n -t$'\t' | bgzip -c > myData.gff.gz
tabix -p gff myData.gff.gz

BED file

grep -v "#" myData.bed | sort -k1,1 -k2,2n -k3,3n -t$'\t' | bgzip -c > myData.bed.gz
tabix -p bed myData.bed.gz

The tabix utility has several preset filetypes that it can process, and it can also process any arbitrary filetype containing at least a chromosome and position column. See the documentation
for details.

If you are going to use the file remotely (i.e. over HTTP or FTP protocol), you should ensure the file is world-readable on your server.

Options

Each custom file that you configure VEP to use can be configured. Beyond the filepath, there are further options, each of which is specified in a comma-separated list, like this:

./vep [...] --custom Filename , Short_name , File_type , Annotation_type , Force_report_coordinates , VCF_fields

The options are as follows:

Filename :
The path to the file. For tabix indexed files, the VEP will check that both the file and the corresponding .tbi file exist. For remote files, VEP will check that the tabix index is accessible on
startup.

Short name :
A name for the annotation that will appear as the key in the key=value pairs in the results.
If not defined, this will default to the annotation filename for the first set of annotation added (e.g. "myPhenotypes.bed.gz" in the second example below if the short name was missing).

File type :

Annotation type :

When using "exact" only annotations whose coordinates match exactly those of the variant will be reported. This would be suitable for position specific information such as conservation
scores, allele frequencies or phenotype information. Using "overlap", any annotation that overlaps the variant by even 1bp will be reported.

Force report coordinates :

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom
http://samtools.sourceforge.net/tabix.shtml
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/website/upload/gff.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
https://www.ensembl.org/info/website/upload/bed.html
http://genome.ucsc.edu/goldenPath/help/bigWig.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#bigfile
http://samtools.sourceforge.net/tabix.shtml

"0" or "1" (if left blank, assumed to be 0)

If set to "1", this forces VEP to output the coordinates of an overlapping custom feature instead of any found identifier (or value in the case of bigWig) field. If set to "0" (the default), VEP
will output the identifier field if one is found; if none is found, then the coordinates are used instead.

VCF fields :
You can specify any info type (e.g. "AC") present in the INFO field of the custom input VCF, to add these as custom annotations:

If using "exact" annotation type, allele-specific annotation will be retrieved.

The INFO field name will be prefixed with the short name, e.g. using short name "test", the INFO field "foo" will appear as "test_FOO" in the VEP output.

In VCF files the custom annotations are added to the CSQ INFO field.

Alleles in the input and VCF entry are trimmed in both directions in an attempt to match complex or poorly formatted entries.

For example:

Example - ClinVar

We include the most recent public variant and phenotype data available in each Ensembl release, but some projects release data more frequently than we do.
If you want to have the very latest annotations, you can use the data files from your prefered projects (in any format listed in Data formats) and use them as a VEP custom annotation.

For instance, you can annotate you variants with VEP, using the the latest ClinVar data as custom annotation.
ClinVar provides VCF files on their FTP site: GRCh37 and GRCh38 .

See below an example about how to use ClinVar VCF files as a VEP custom annotation:

1. Download the VCF files (you need the compressed VCF file and the index file), e.g.:

Compressed VCF file
curl -O ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
Index file
curl -O ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz.tbi

2. Example of command you can use:

BigWig file
./vep [...] --custom frequencies.bw,Frequency,bigwig,exact,0
BED file
./vep [...] --custom http://www.myserver.com/data/myPhenotypes.bed.gz,Phenotype,bed,exact,1
VCF file
./vep [...] --custom http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh37/variation_genotype/TOPMED_GRCh37.vcf.gz,,

./vep [...] --custom clinvar.vcf.gz,ClinVar,vcf,exact,0,CLNSIG,CLNREVSTAT,CLNDN

Where the selected ClinVar INFO fields (from the ClinVar VCF file) are:
- CLNSIG: Clinical significance for this single variant
- CLNREVSTAT: ClinVar review status for the Variation ID
- CLNDN: ClinVar's preferred disease name for the concept specified by disease identifiers in CLNDISDB
Of course you can select the INFO fields you want in the ClinVar VCF file

Quick example on GRCh38:
./vep --id "1 230710048 230710048 A/G 1" --species homo_sapiens -o /path/to/output/output.txt --cache --offline --assembly GRCh38 --cus

Column descriptions:
Uploaded_variation : Identifier of uploaded variant
Location : Location of variant in standard coordinate format (chr:start or chr:start-end)
Allele : The variant allele used to calculate the consequence
Gene : Stable ID of affected gene
Feature : Stable ID of feature
Feature_type : Type of feature - Transcript, RegulatoryFeature or MotifFeature
Consequence : Consequence type
cDNA_position : Relative position of base pair in cDNA sequence
CDS_position : Relative position of base pair in coding sequence
Protein_position : Relative position of amino acid in protein
Amino_acids : Reference and variant amino acids
Codons : Reference and variant codon sequence
Existing_variation : Identifier(s) of co-located known variants
Extra column keys:
IMPACT : Subjective impact classification of consequence type
DISTANCE : Shortest distance from variant to transcript
STRAND : Strand of the feature (1/-1)
FLAGS : Transcript quality flags
SOURCE : Source of transcript
ClinVar : /opt/vep/.vep/custom/clinvar.vcf.gz (exact)
ClinVar_CLNSIG : CLNSIG field from /path/to/custom_files/clinvar.vcf.gz
ClinVar_CLNREVSTAT : CLNREVSTAT field from /path/to/custom_files/clinvar.vcf.gz
ClinVar_CLNDN : CLNDN field from /path/to/custom_files/clinvar.vcf.gz
#Uploaded_variation Location Allele Gene Feature Feature_type Consequence ... Extra
1_230710048_A/G 1:230710048 G ENSG00000135744 ENST00000366667 Transcript missense_variant ... IMPACT=MODERATE;
1_230710048_A/G 1:230710048 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant ... IMPACT=MODIFIER;

##fileformat=VCFv4.1
##INFO=<ID=CSQ,Number=.,Type=String,Description="Consequence annotations from Ensembl VEP. Format: Allele|Consequence|IMPACT|SYMBOL|Gene
##INFO=<ID=ClinVar,Number=.,Type=String,Description="/path/to/custom_files/clinvar.vcf.gz (exact)">
##INFO=<ID=ClinVar_CLNSIG,Number=.,Type=String,Description="CLNSIG field from /path/to/custom_files/clinvar.vcf.gz">
##INFO=<ID=ClinVar_CLNREVSTAT,Number=.,Type=String,Description="CLNREVSTAT field from /path/to/custom_files/clinvar.vcf.gz">
##INFO=<ID=ClinVar_CLNDN,Number=.,Type=String,Description="CLNDN field from /path/to/custom_files/clinvar.vcf.gz">

Results in the default VEP format

Results in VCF (adding the tag --vcf in the command line)

http://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/
https://www.ensembl.orgftp//ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/

Using remote files

The tabix utility makes it possible to read annotation files from remote locations, for example over HTTP or FTP protocols.

In order to do this, the .tbi index file is downloaded locally (to the current working directory) when VEP is run. From this point on, only the portions of data requested by VEP (i.e. those
overlapping the variants in your input file) are downloaded.

bigWig files can also be used remotely in the same way as tabix-indexed files, although less stringent checks are carried out on VEP startup.

#CHROM POS ID REF ALT QUAL FILTER INFO
1 230710048 1_230710048_A/G A G . . CSQ=G|missense_variant|MODERATE|AGT|ENSG00000135744|Transcript|ENST000003666

Variant Effect Predictor Plugins

VEP can use plugin modules written in Perl to add functionality to the software.

Plugins are a powerful way to extend, filter and manipulate the VEP output.
They can be installed using VEP's installer script, run the following command to get a list of available plugins:

perl INSTALL.pl -a p -g list

Some plugins are also available to use via the VEP web interface.

Existing plugins

We have written several plugins that implement experimental functionalities that we do not (yet) include in the variation API, and these are stored in a public github repository:

https://github.com/Ensembl/VEP_plugins

Here is the list of the VEP plugins available:

Select categories: All categories

Plugin Description

AncestralAllele A VEP plugin that retrieves ancestral allele sequences from a FASTA file. ...

Ensembl produces FASTA file dumps of the ancestral sequences of key species.
They are available from ftp://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/

For optimal retrieval speed, you should pre-process the FASTA files into a single
bgzipped file that can be accessed via Bio::DB::HTS::Faidx (installed by VEP's
INSTALL.pl):

wget ftp://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
tar xfz homo_sapiens_ancestor_GRCh38.tar.gz
cat homo_sapiens_ancestor_GRCh38/*.fa | bgzip -c > homo_sapiens_ancestor_GRCh38.fa.gz
rm -rf homo_sapiens_ancestor_GRCh38/ homo_sapiens_ancestor_GRCh38.tar.gz

 ./vep -i variations.vcf --plugin AncestralAllele,homo_sapiens_ancestor_GRCh38.fa.gz

The plugin is also compatible with Bio::DB::Fasta and an uncompressed FASTA file.

Note the first time you run the plugin with a newly generated FASTA file it will
spend some time indexing the file. DO NOT INTERRUPT THIS PROCESS, particularly
if you do not have Bio::DB::HTS installed.

Special cases:
"-" represents an insertion
"?" indicates the chromosome could not be looked up in the FASTA

Blosum62 This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
looks up the BLOSUM 62 substitution matrix score for the reference
and alternative amino acids predicted for a missense mutation. It adds
one new entry to the VEP's Extra column, BLOSUM62 which is the
associated score.

CADD
Combined Annotation Dependent
Depletion

A VEP plugin that retrieves CADD scores for variants from one or more
tabix-indexed CADD data files. ...

Please cite the CADD publication alongside the VEP if you use this resource:
https://www.ncbi.nlm.nih.gov/pubmed/24487276

The tabix utility must be installed in your path to use this plugin. The CADD
data files can be downloaded from
http://cadd.gs.washington.edu/download

The plugin works with all versions of available CADD files. The plugin only
reports scores and does not consider any additional annotations from a CADD
file. It is therefore sufficient to use CADD files without the additional
annotations.

https://www.ensembl.org/Tools/VEP
http://github.com/Ensembl/VEP_plugins
https://github.com/Ensembl/VEP_plugins/blob/release/104/AncestralAllele.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/Blosum62.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/CADD.pm

Plugin Description

Carol This is a plugin for the Ensembl Variant Effect Predictor (VEP) that calculates
the Combined Annotation scoRing toOL (CAROL) score (1) for a missense mutation
based on the pre-calculated SIFT (2) and PolyPhen-2 (3) scores from the Ensembl
API (4). It adds one new entry class to the VEP's Extra column, CAROL which is
the calculated CAROL score. Note that this module is a perl reimplementation of
the original R script, available at: ...

http://www.sanger.ac.uk/resources/software/carol/

I believe that both versions implement the same algorithm, but if there are any
discrepancies the R version should be treated as the reference implementation.
Bug reports are welcome.

References:

(1) Lopes MC, Joyce C, Ritchie GRS, John SL, Cunningham F, Asimit J, Zeggini E.
A combined functional annotation score for non-synonymous variants
Human Heredity (in press)

(2) Kumar P, Henikoff S, Ng PC.
Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
Nature Protocols 4(8):1073-1081 (2009)
doi:10.1038/nprot.2009.86

(3) Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR.
A method and server for predicting damaging missense mutations
Nature Methods 7(4):248-249 (2010)
doi:10.1038/nmeth0410-248

(4) Flicek P, et al.
Ensembl 2012
Nucleic Acids Research (2011)
doi: 10.1093/nar/gkr991

Condel This is a plugin for the Ensembl Variant Effect Predictor (VEP) that calculates
the Consensus Deleteriousness (Condel) score (1) for a missense mutation
based on the pre-calculated SIFT (2) and PolyPhen-2 (3) scores from the Ensembl
API (4). It adds one new entry class to the VEP's Extra column, Condel which is
the calculated Condel score. This version of Condel was developed by the Biomedical Genomics Group
of the Universitat Pompeu Fabra, at the Barcelona Biomedical Research Park and available at
(http://bg.upf.edu/condel) until April 2014. The code in this plugin is based on a script provided by this
group and slightly reformatted to fit into the Ensembl API. ...

The plugin takes 3 command line arguments, the first is the path to a Condel
configuration directory which contains cutoffs and the distribution files etc.,
the second is either "s", "p", or "b" to output the Condel score, prediction or
both (the default is both), and the third argument is either 1 or 2 to use the
original version of Condel (1), or the newer version (2) - 2 is the default and
is recommended to avoid false positive predictions from Condel in some
circumstances.

An example Condel configuration file and a set of distribution files can be found
in the config/Condel directory in this repository. You should edit the
config/Condel/config/condel_SP.conf file and set the 'condel.dir' parameter to
the full path to the location of the config/Condel directory on your system.

References:

(1) Gonzalez-Perez A, Lopez-Bigas N.
Improving the assessment of the outcome of non-synonymous SNVs with a Consensus deleteriousness score (Condel)
Am J Hum Genet 88(4):440-449 (2011)
doi:10.1016/j.ajhg.2011.03.004

(2) Kumar P, Henikoff S, Ng PC.
Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
Nature Protocols 4(8):1073-1081 (2009)
doi:10.1038/nprot.2009.86

(3) Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR.
A method and server for predicting damaging missense mutations
Nature Methods 7(4):248-249 (2010)
doi:10.1038/nmeth0410-248

(4) Flicek P, et al.
Ensembl 2012
Nucleic Acids Research (2011)
doi: 10.1093/nar/gkr991

Conservation This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
retrieves a conservation score from the Ensembl Compara databases
for variant positions. You can specify the method link type and
species sets as command line options, the default is to fetch GERP
scores from the EPO 35 way mammalian alignment (please refer to the
Compara documentation for more details of available analyses). ...

If a variant affects multiple nucleotides the average score for the
position will be returned, and for insertions the average score of
the 2 flanking bases will be returned.

The plugin uses the ensembl-compara API module (optional, see http://www.ensembl.org/info/docs/api/index.html)
or obtains data directly from BigWig files (optional, see ftp://ftp.ensembl.org/pub/current_compara/conservation_scores/)

dbNSFP A VEP plugin that retrieves data for missense variants from a tabix-indexed
dbNSFP file. ...

Please cite the dbNSFP publications alongside the VEP if you use this resource:
dbNSFP https://www.ncbi.nlm.nih.gov/pubmed/21520341
dbNSFP v2.0 https://www.ncbi.nlm.nih.gov/pubmed/23843252

https://github.com/Ensembl/VEP_plugins/blob/release/104/Carol.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/Condel.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/Conservation.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/dbNSFP.pm

Plugin Description
dbNSFP v3.0 https://www.ncbi.nlm.nih.gov/pubmed/26555599
dbNSFP v4 https://www.ncbi.nlm.nih.gov/pubmed/33261662

You must have the Bio::DB::HTS module or the tabix utility must be installed
in your path to use this plugin. The dbNSFP data file can be downloaded from
https://sites.google.com/site/jpopgen/dbNSFP.

The file must be processed and indexed with tabix before use by this plugin.
The file must be processed according to the dbNSFP release version and the assembly you use.
It is recommended to use the -T option with the sort command to specify a temporary directory with sufficient space.

Release 3.5a of dbNSFP uses GRCh38/hg38 coordinates and GRCh37/hg19
coordinates.
To use plugin with GRCh37/hg19 data:
> wget ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFPv3.5a.zip
> unzip dbNSFPv3.5a.zip
> head -n1 dbNSFP3.5a_variant.chr1 > h
> cat dbNSFP3.5a_variant.chr* | grep -v ^#chr | awk '$8 != "."' | sort -T /path/to/tmp_folder -k8,8 -k9,9n - | cat h - | bgzip -c > dbNSFP_hg19.gz
> tabix -s 8 -b 9 -e 9 dbNSFP_hg19.gz

To use plugin with GRCh38/hg38 data:
> wget ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFPv3.5a.zip
> unzip dbNSFPv3.5a.zip
> head -n1 dbNSFP3.5a_variant.chr1 > h
> cat dbNSFP3.5a_variant.chr* | grep -v ^#chr | sort -T /path/to/tmp_folder -k1,1 -k2,2n - | cat h - | bgzip -c > dbNSFP.gz
> tabix -s 1 -b 2 -e 2 dbNSFP.gz

For release 4.0a with GRCh38/hg38 data:
> wget ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFP4.0a.zip
> unzip dbNSFP4.0a.zip
> zcat dbNSFP4.0a_variant.chr1.gz | head -n1 > h
> zgrep -h -v ^#chr dbNSFP4.0a_variant.chr* | sort -T /path/to/tmp_folder -k1,1 -k2,2n - | cat h - | bgzip -c > dbNSFP4.0a.gz
> tabix -s 1 -b 2 -e 2 dbNSFP4.0a.gz

For release 4.1a with GRCh38/hg38 data:
> wget ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFP4.1a.zip
> unzip dbNSFP4.1a.zip
> zcat dbNSFP4.1a_variant.chr1.gz | head -n1 > h
> zgrep -h -v ^#chr dbNSFP4.1a_variant.chr* | sort -T /path/to/tmp_folder -k1,1 -k2,2n - | cat h - | bgzip -c > dbNSFP4.1a_grch38.gz
> tabix -s 1 -b 2 -e 2 dbNSFP4.1a_grch38.gz

For release 4.1a with GRCh37/hg19 data:
> wget ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFP4.1a.zip
> unzip dbNSFP4.1a.zip
> zcat dbNSFP4.1a_variant.chr1.gz | head -n1 > h
> zgrep -h -v ^#chr dbNSFP4.1a_variant.chr* | awk '$8 != "." ' | sort -T /path/to/tmp_folder -k8,8 -k9,9n - | cat h - | bgzip -c > dbNSFP4.1a_grch37.gz
> tabix -s 8 -b 9 -e 9 dbNSFP4.1a_grch37.gz

When running the plugin you must list at least one column to retrieve from the
dbNSFP file, specified as parameters to the plugin e.g.

 --plugin dbNSFP,/path/to/dbNSFP.gz,LRT_score,GERP++_RS

You may include all columns with ALL; this fetches a large amount of data per
variant!:

 --plugin dbNSFP,/path/to/dbNSFP.gz,ALL

Tabix also allows the data file to be hosted on a remote server. This plugin is
fully compatible with such a setup - simply use the URL of the remote file:

 --plugin dbNSFP,http://my.files.com/dbNSFP.gz,col1,col2

The plugin replaces occurrences of ';' with ',' and '|' with '&'. However, some
data field columns, e.g. Interpro_domain, use the replacement characters. We
added a file with replacement logic for customising the required replacement
of ';' and '|' in dbNSFP data columns. In addition to the default replacements
(; to , and | to &) users can add customised replacements. Users can either modify
the file dbNSFP_replacement_logic in the VEP_plugins directory or provide their own
file as second argument when calling the plugin:

 --plugin dbNSFP,/path/to/dbNSFP.gz,/path/to/dbNSFP_replacement_logic,LRT_score,GERP++_RS

Note that transcript sequences referred to in dbNSFP may be out of sync with
those in the latest release of Ensembl; this may lead to discrepancies with
scores retrieved from other sources.

If the dbNSFP README file is found in the same directory as the data file,
column descriptions will be read from this and incorporated into the VEP output
file header.

The plugin matches rows in the tabix-indexed dbNSFP file on:

position
alt allele
aaref - reference amino acid
aaalt - alternative amino acid

To match only on the first position and the alt allele use --pep_match=0

--plugin dbNSFP,/path/to/dbNSFP.gz,pep_match=0,col1,col2

Plugin Description

dbscSNV A VEP plugin that retrieves data for splicing variants from a tabix-indexed
dbscSNV file. ...

Please cite the dbscSNV publication alongside the VEP if you use this resource:
http://nar.oxfordjournals.org/content/42/22/13534

The Bio::DB::HTS perl library or tabix utility must be installed in your path
to use this plugin. The dbscSNV data file can be downloaded from
https://sites.google.com/site/jpopgen/dbNSFP.

The file must be processed and indexed by tabix before use by this plugin.
dbscSNV1.1 has coordinates for both GRCh38 and GRCh37; the file must be
processed differently according to the assembly you use.

> wget ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
> unzip dbscSNV1.1.zip
> head -n1 dbscSNV1.1.chr1 > h

GRCh38
> cat dbscSNV1.1.chr* | grep -v ^chr | sort -k5,5 -k6,6n | cat h - | awk '$5 != "."' | bgzip -c > dbscSNV1.1_GRCh38.txt.gz
> tabix -s 5 -b 6 -e 6 -c c dbscSNV1.1_GRCh38.txt.gz

GRCh37
> cat dbscSNV1.1.chr* | grep -v ^chr | cat h - | bgzip -c > dbscSNV1.1_GRCh37.txt.gz
> tabix -s 1 -b 2 -e 2 -c c dbscSNV1.1_GRCh37.txt.gz

Note that in the last command we tell tabix that the header line starts with "c";
this may change to the default of "#" in future versions of dbscSNV.

Tabix also allows the data file to be hosted on a remote server. This plugin is
fully compatible with such a setup - simply use the URL of the remote file:

 --plugin dbscSNV,http://my.files.com/dbscSNV.txt.gz

Note that transcript sequences referred to in dbscSNV may be out of sync with
those in the latest release of Ensembl; this may lead to discrepancies with
scores retrieved from other sources.

https://github.com/Ensembl/VEP_plugins/blob/release/104/dbscSNV.pm

Plugin Description

DisGeNET This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds Variant-Disease-PMID associations from the DisGeNET database.
It is available for GRCh38. ...

Please cite the DisGeNET publication alongside the VEP if you use this resource:
https://academic.oup.com/nar/article/48/D1/D845/5611674

Options are passed to the plugin as key=value pairs:

file : Path to DisGeNET data file (mandatory).

disease : Set value to 1 to include the diseases/phenotype names reporting
the Variant-PMID association (optional).

rsid : Set value to 1 to include the dbSNP variant Identifier (optional).

filter_score : Only reports citations with score greater or equal than input value (optional).

filter_source : Only reports citations from input sources (optional).
Accepted sources are: UNIPROT, CLINVAR, GWASDB, GWASCAT, BEFREE
Separate multiple values with '&'.

Output:
Each element of the output includes:
- PMID of the publication reporting the Variant-Disease association (default)
- DisGeNET score for the Variant-Disease association (default)
- diseases/phenotype names (optional)
- dbSNP variant Identifier (optional)

The following steps are necessary before running this plugin (tested with DisGeNET export date 2020-05-26):
This plugin uses file 'all_variant_disease_pmid_associations.tsv.gz'
File can be downloaded from: https://www.disgenet.org/downloads

gunzip all_variant_disease_pmid_associations.tsv.gz

awk '($1 ~ /^snpId/ || $2 ~ /NA/) {next} {print $0}'
all_variant_disease_pmid_associations.tsv > all_variant_disease_pmid_associations_clean.tsv

sort -t $'\t' -k2,2 -k3,3n
all_variant_disease_pmid_associations_clean.tsv > all_variant_disease_pmid_associations_sorted.tsv

awk '{ gsub (/\t +/, "\t", $0); print}'
all_variant_disease_pmid_associations_sorted.tsv > all_variant_disease_pmid_associations_final.tsv

bgzip all_variant_disease_pmid_associations_final.tsv
tabix -s 2 -b 3 -e 3 all_variant_disease_pmid_associations_final.tsv.gz

The plugin can then be run as default:

 ./vep -i variations.vcf --plugin DisGeNET,file=all_variant_disease_pmid_associations_final.tsv.gz

or with an option to include optional data or/and filters:

 ./vep -i variations.vcf --plugin DisGeNET,file=all_variant_disease_pmid_associations_final.tsv.gz,

disease=1

 ./vep -i variations.vcf --plugin DisGeNET,file=all_variant_disease_pmid_associations_final.tsv.gz,

disease=1,filter_source='GWASDB&GWASCAT'

Of notice: this plugin only matches the chromosome and the position in the
chromosome, the alleles are not taken into account to append the DisGeNET data.
The rsid is provided (optional) in the output in order to help to filter the relevant data.

Downstream This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
predicts the downstream effects of a frameshift variant on the protein
sequence of a transcript. It provides the predicted downstream protein
sequence (including any amino acids overlapped by the variant itself),
and the change in length relative to the reference protein. ...

Note that changes in splicing are not predicted - only the existing
translateable (i.e. spliced) sequence is used as a source of
translation. Any variants with a splice site consequence type are
ignored.

If VEP is run in offline mode using the flag --offline, a FASTA file is required.
See: https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
Sequence may be incomplete without a FASTA file or database connection.

https://github.com/Ensembl/VEP_plugins/blob/release/104/DisGeNET.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/Downstream.pm

Plugin Description

Draw A VEP plugin that draws pictures of the transcript model showing the
variant location. Can take five optional paramters: ...

1) File name stem for images
2) Image width in pixels (default: 1000px)
3) Image height in pixels (default: 100px)
4) Transcript ID - only draw images for this transcript
5) Variant ID - only draw images for this variant

e.g.

 ./vep -i variations.vcf --plugin Draw,myimg,2000,100

Images are written to [file_stem]_[transcript_id]_[variant_id].png

Requires GD library installed to run.

ExAC A VEP plugin that retrieves ExAC allele frequencies. ...

Visit ftp://ftp.broadinstitute.org/pub/ExAC_release/current to download the latest ExAC VCF.

Note that the currently available version of the ExAC data file (0.3) is only available
on the GRCh37 assembly; therefore it can only be used with this plugin when using the
VEP on GRCh37. See http://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly

The tabix utility must be installed in your path to use this plugin.

The plugin takes 3 command line arguments. Second and third arguments are not mandatory. If AC specified as second
argument Allele counts per population will be included in output. If AN specified as third argument Allele specific
chromosome counts will be included in output.

ExACpLI A VEP plugin that adds the probabililty of a gene being
loss-of-function intolerant (pLI) to the VEP output. ...

Lek et al. (2016) estimated pLI using the expectation-maximization
(EM) algorithm and data from 60,706 individuals from
ExAC (http://exac.broadinstitute.org/about). The closer pLI is to 1,
the more likely the gene is loss-of-function (LoF) intolerant.

Note: the pLI was calculated using a representative transcript and
is reported by gene in the plugin.

The data for the plugin is provided by Kaitlin Samocha and Daniel MacArthur.
See https://www.ncbi.nlm.nih.gov/pubmed/27535533 for a description
of the dataset and analysis.

The ExACpLI_values.txt file is found alongside the plugin in the
VEP_plugins GitHub repository. The file contains the fields gene and pLI
extracted from the file at

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint/
fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt

To use another values file, add it as a parameter i.e.

 ./vep -i variants.vcf --plugin ExACpLI,values_file.txt

FATHMM A VEP plugin that gets FATHMM scores and predictions for missense variants. ...

You will need the fathmm.py script and its dependencies (Python, Python
MySQLdb). You should create a "config.ini" file in the same directory as the
fathmm.py script with the database connection options. More information about
how to set up FATHMM can be found on the FATHMM website at
https://github.com/HAShihab/fathmm.

A typical installation could consist of:

> wget https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
> wget http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
> gunzip fathmm.v2.3.SQL.gz
> mysql -h[host] -P[port] -u[user] -p[pass] -e"CREATE DATABASE fathmm"
> mysql -h[host] -P[port] -u[user] -p[pass] -Dfathmm < fathmm.v2.3.SQL
> echo -e "[DATABASE]\nHOST = [host]\nPORT = [port]\nUSER = [user]\nPASSWD = [pass]\nDB = fathmm\n" > config.ini

FATHMM_MKL A VEP plugin that retrieves FATHMM-MKL scores for variants from a tabix-indexed
FATHMM-MKL data file. ...

See https://github.com/HAShihab/fathmm-MKL for details.

NB: The currently available data file is for GRCh37 only.

FlagLRG A VEP plugin that retrieves the LRG ID matching either the RefSeq or Ensembl
transcript IDs. You can obtain the 'list_LRGs_transcripts_xrefs.txt' using: ...

> wget ftp://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt

https://github.com/Ensembl/VEP_plugins/blob/release/104/Draw.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/ExAC.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/ExACpLI.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/FATHMM.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/FATHMM_MKL.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/FlagLRG.pm

Plugin Description

FunMotifs This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds tissue-specific transcription factor motifs from FunMotifs to VEP output. ...

Please cite the FunMotifs publication alongside the VEP if you use this resource.
The preprint can be found at: https://www.biorxiv.org/content/10.1101/683722v1

FunMotifs files can be downloaded from: http://bioinf.icm.uu.se:3838/funmotifs/
At the time of writing, all BED files found through this link support GRCh37,
however other assemblies are supported by the plugin if an appropriate BED file
is supplied.

The tabix utility must be installed in your path to use this plugin.

G2P
gene2phenotype

A VEP plugin that uses G2P allelic requirements to assess variants in genes
for potential phenotype involvement. ...

The plugin has multiple configuration options, though minimally requires only
the CSV file of G2P data.

Options are passed to the plugin as key=value pairs, (defaults in parentheses):

file : Path to G2P data file. The file needs to be uncompressed.
- Download from https://www.ebi.ac.uk/gene2phenotype/downloads
- Download from PanelApp

variant_include_list : A list of variants to include even if variants do not pass allele
frequency filtering. The include list needs to be a sorted, bgzipped and
tabixed VCF file.

af_monoallelic : maximum allele frequency for inclusion for monoallelic genes (0.0001)

af_biallelic : maximum allele frequency for inclusion for biallelic genes (0.005)
confidence_levels : Confidence levels to include: confirmed, probable, possible, both RD and IF.
Separate multiple values with '&'.
https://www.ebi.ac.uk/gene2phenotype/terminology
Default levels are confirmed and probable.
all_confidence_levels : Set value to 1 to include all confidence levels: confirmed, probable and possible.
Setting the value to 1 will overwrite any confidence levels provided with the
confidence_levels option.
af_from_vcf : set value to 1 to include allele frequencies from VCF file.
Specifiy the list of reference populations to include with --af_from_vcf_keys
af_from_vcf_keys : VCF collections used for annotating variant alleles with observed
allele frequencies. Allele frequencies are retrieved from VCF files. If
af_from_vcf is set to 1 but no VCF collections are specified with --af_from_vcf_keys
all available VCF collections are included.
Available VCF collections: topmed, uk10k, gnomADe, gnomADg, gnomADg_r3.0
Separate multiple values with '&'
VCF collections contain the following populations:
topmed: TOPMed
uk10k: ALSPAC, TWINSUK
gnomADe: gnomADe:AFR, gnomADe:ALL, gnomADe:AMR, gnomADe:ASJ, gnomADe:EAS, gnomADe:FIN, gnomADe:NFE, gnomADe:OTH, gnomADe:SAS
gnomADg: gnomADg:AFR, gnomADg:ALL, gnomADg:AMR, gnomADg:ASJ, gnomADg:EAS, gnomADg:FIN, gnomADg:NFE, gnomADg:OTH
default_af : default frequency of the input variant if no frequency data is
found (0). This determines whether such variants are included;
the value of 0 forces variants with no frequency data to be
included as this is considered equivalent to having a frequency
of 0. Set to 1 (or any value higher than af) to exclude them.
types : SO consequence types to include. Separate multiple values with '&'
(splice_donor_variant,splice_acceptor_variant,stop_gained,
frameshift_variant,stop_lost,initiator_codon_variant,
inframe_insertion,inframe_deletion,missense_variant,
coding_sequence_variant,start_lost,transcript_ablation,
transcript_amplification,protein_altering_variant)

log_dir : write stats to log files in log_dir

txt_report : write all G2P complete genes and attributes to txt file

html_report : write all G2P complete genes and attributes to html file

Example:

 --plugin G2P,file=G2P.csv,af_monoallelic=0.05,types=stop_gained&frameshift_variant

 --plugin G2P,file=G2P.csv,af_monoallelic=0.05,af_from_vcf=1

 --plugin G2P,file=G2P.csv,af_from_vcf=1,af_from_vcf_keys=topmed&gnomADg

 --plugin G2P,file=G2P.csv,af_from_vcf=1,af_from_vcf_keys=topmed&gnomADg,confidence_levels='confirmed&probable&both R

 --plugin G2P,file=G2P.csv

https://github.com/Ensembl/VEP_plugins/blob/release/104/FunMotifs.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/G2P.pm

Plugin Description

GeneSplicer This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
runs GeneSplicer (https://ccb.jhu.edu/software/genesplicer/) to get
splice site predictions. ...

It evaluates a tract of sequence either side of and including the
variant, both in reference and alternate states. The amount of
sequence included either side defaults to 100bp, but can be modified
by passing e.g. "context=50" as a parameter to the plugin.

Any predicted splicing regions that overlap the variant are reported
in the output with one of four states: no_change, diff, gain, loss

There follows a "/"-separated string consisting of the following data:

1) type (donor, acceptor)
2) coordinates (start-end)
3) confidence (Low, Medium, High)
4) score

Example: loss/acceptor/727006-727007/High/16.231924

If multiple sites are predicted, their reports are separated by ",".

For diff, the confidence and score for both the reference and alternate
sequences is reported as REF-ALT.

Example: diff/donor/621915-621914/Medium-Medium/7.020731-6.988368

Several parameters can be modified by passing them to the plugin string:

context : change the amount of sequence added either side of
the variant (default: 100bp)
tmpdir : change the temporary directory used (default: /tmp)
cache_size : change how many sequences' scores are cached in memory
(default: 50)

Example: --plugin GeneSplicer,$GS/bin/linux/genesplicer,$GS/human,context=200,tmpdir=/mytmp

On some systems the binaries provided will not execute, but can be compiled from source:

cd $GS/sources
make
cd -

 ./vep [options] --plugin GeneSplicer,$GS/sources/genesplicer,$GS/human

On Mac OSX the make step is known to fail; the genesplicer.cpp file requires modification:

cd $GS/sources
perl -pi -e "s/^main /int main /" genesplicer.cpp
make

https://github.com/Ensembl/VEP_plugins/blob/release/104/GeneSplicer.pm

Plugin Description

gnomADc A VEP plugin that retrieves gnomAD annotation from either the genome
or exome coverage files, available here: ...

https://gnomad.broadinstitute.org/downloads

Or via the Google Cloud console:

https://console.cloud.google.com/storage/browser/gnomad-public/release

The coverage summary files must be processed and Tabix indexed before
use by this plugin. Please select from the instructions below:

GRCh38 and gnomAD genomes:
> genomes="https://storage.googleapis.com/gnomad-public/release/3.0/coverage/genomes"
> genome_coverage_tsv="gnomad.genomes.r3.0.coverage.summary.tsv.bgz"
> wget "${genomes}/${genome_coverage_tsv}"
> zcat "${genome_coverage_tsv}" | sed -e '1s/^locus/#chrom\tpos/; s/:/\t/' | bgzip > gnomADc.gz
> tabix -s 1 -b 2 -e 2 gnomADc.gz

GRCh37 and gnomAD genomes:
> genomes="https://storage.googleapis.com/gnomad-public/release/2.1/coverage/genomes"
> genome_coverage_tsv="gnomad.genomes.coverage.summary.tsv.bgz"
> wget "${genomes}/${genome_coverage_tsv}"
> zcat "${genome_coverage_tsv}" | sed -e '1s/^/#/' | bgzip > gnomADg.gz
> tabix -s 1 -b 2 -e 2 gnomADg.gz

GRCh37 and gnomAD exomes:
> exomes="https://storage.googleapis.com/gnomad-public/release/2.1/coverage/exomes"
> exome_coverage_tsv="gnomad.exomes.coverage.summary.tsv.bgz"
> wget "${exomes}/${exome_coverage_tsv}"
> zcat "${exome_coverage_tsv}" | sed -e '1s/^/#/' | bgzip > gnomADe.gz
> tabix -s 1 -b 2 -e 2 gnomADe.gz

By default, the output field prefix is 'gnomAD'. However if the input file's
basename is 'gnomADg' (genomes) or 'gnomADe' (exomes), then these values are
used instead. This makes it possible to call the plugin twice and include
both genome and exome coverage values in a single run. For example:

 ./vep -i variations.vcf --plugin gnomADc,/path/to/gnomADg.gz --plugin gnomADc,/path/to/gnomADe.gz

This plugin also tries to be backwards compatible with older versions of the
coverage summary files, including releases 2.0.1 and 2.0.2. These releases
make available one coverage file per chromosome and these can be used "as-is"
without requiring any preprocessing. To annotate against multiple tabix-indexed
chromosome files, instead specify the path to the parent directory. For example:

 ./vep -i variations.vcf --plugin gnomADc,/path/to/gnomad-public/release/2.0.2/coverage/genomes

When a directory path is supplied, only files immediately under this directory
that have a '.txt.gz' extension will attempt to be loaded. By default, the
output field prefix is simply 'gnomAD'. However if the parent directory is
either 'genomes' or 'exomes', then the output field prefix will be 'gnomADg'
or 'gnomADe', respectively.

If you use this plugin, please see the terms and data information:

https://gnomad.broadinstitute.org/terms

You must have the Bio::DB::HTS module or the tabix utility must be installed
in your path to use this plugin.

GO
Gene Ontology

A VEP plugin that retrieves Gene Ontology terms associated with
transcripts/translations via the Ensembl API. Requires database connection.

HGVSIntronOffset A VEP plugin for the Ensembl Variant Effect Predictor (VEP) that returns
HGVS intron start and end offsets. To be used with --hgvs option.

https://github.com/Ensembl/VEP_plugins/blob/release/104/gnomADc.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/GO.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/HGVSIntronOffset.pm

Plugin Description

LD
Linkage Disequilibrium

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
finds variants in linkage disequilibrium with any overlapping existing
variants from the Ensembl variation databases. You can configure the
population used to calculate the r2 value, and the r2 cutoff used by
passing arguments to the plugin via the VEP command line (separated
by commas). This plugin adds a single new entry to the Extra column
with a comma-separated list of linked variant IDs and the associated
r2 values, e.g.: ...

LinkedVariants=rs123:0.879,rs234:0.943

If no arguments are supplied, the default population used is the CEU
sample from the 1000 Genomes Project phase 3, and the default r2
cutoff used is 0.8.

WARNING: Calculating LD is a relatively slow procedure, so this will
slow VEP down considerably when running on large numbers of
variants. Consider running vep followed by filter_vep to get a smaller
input set:

 ./vep -i input.vcf -cache -vcf -o input_vep.vcf

 ./filter_vep -i input_vep.vcf -filter "Consequence is missense_variant" > input_vep_filtered.vcf

 ./vep -i input_vep_filtered.vcf -cache -plugin LD

LocalID The LocalID plugin allows you to use variant IDs as input without making a database connection. ...

Requires sqlite3.

A local sqlite3 database is used to look up variant IDs; this is generated either from Ensembl's
public database (very slow, but includes synonyms), or from a VEP cache file (faster, excludes
synonyms).

NB this plugin is NOT compatible with the ensembl-tools variant_effect_predictor.pl version of VEP.

LoFtool
Loss-of-function

Add LoFtool scores to the VEP output. ...

LoFtool provides a rank of genic intolerance and consequent
susceptibility to disease based on the ratio of Loss-of-function (LoF)
to synonymous mutations for each gene in 60,706 individuals from ExAC,
adjusting for the gene de novo mutation rate and evolutionary protein
conservation. The lower the LoFtool gene score percentile the most
intolerant is the gene to functional variation. For more details please see
(Fadista J et al. 2017), PMID:27563026.
The authors would like to thank the Exome Aggregation Consortium and
the groups that provided exome variant data for comparison. A full
list of contributing groups can be found at http://exac.broadinstitute.org/about.

The LoFtool_scores.txt file is found alongside the plugin in the
VEP_plugins GitHub repo.

To use another scores file, add it as a parameter i.e.

 ./vep -i variants.vcf --plugin LoFtool,scores_file.txt

LOVD
Leiden Open Variation Database

A VEP plugin that retrieves LOVD variation data from http://www.lovd.nl/. ...

Please be aware that LOVD is a public resource of curated variants, therefore
please respect this resource and avoid intensive querying of their databases
using this plugin, as it will impact the availability of this resource for
others.

https://github.com/Ensembl/VEP_plugins/blob/release/104/LD.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/LocalID.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/LoFtool.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/LOVD.pm

Plugin Description

Mastermind This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
uses the Mastermind Genomic Search Engine (https://www.genomenon.com/mastermind)
to report variants that have clinical evidence cited in the medical literature.
It is available for both GRCh37 and GRCh38. ...

Please cite the Mastermind publication alongside the VEP if you use this resource:
https://www.frontiersin.org/article/10.3389/fgene.2020.577152

Running options:
The plugin has multiple parameters, the first one is expected to be the file name path
which can be followed by 3 optional flags.
Default: the plugin matches the citation data with the specific mutation.
Using first flag '1': returns the citations for all mutations/transcripts.
Using the second flag '1': only returns the Mastermind variant identifier(s).
Using the third flag '1': also returns the Mastermind URL.

Output:
The output includes three unique counts 'MMCNT1, MMCNT2, MMCNT3' and one identifier 'MMID3'
to be used to build an URL which shows all articles from MMCNT3.

'MMCNT1' is the count of Mastermind articles with cDNA matches for a specific variant;
'MMCNT2' is the count of Mastermind articles with variants either explicitly matching at
the cDNA level or given only at protein level;
'MMCNT3' is the count of Mastermind articles including other DNA-level variants resulting
in the same amino acid change;
'MMID3' is the Mastermind variant identifier(s), as gene:key. Link to the Genomenon Mastermind Genomic Search Engine;

To build the URL, substitute the 'gene:key' in the following link with the value from MMID3:
https://mastermind.genomenon.com/detail?mutation=gene:key

If the third flag is used then the built URL is returned and it's identified by 'URL'.

More information can be found at: https://www.genomenon.com/cvr/

The following steps are necessary before running this plugin:

Download and Registry (free):
https://www.genomenon.com/cvr/

GRCh37 VCF:
unzip mastermind_cited_variants_reference-XXXX.XX.XX-grch37-vcf.zip
bgzip mastermind_cited_variants_reference-XXXX.XX.XX-GRCh37-vcf
tabix -p vcf mastermind_cited_variants_reference-XXXX.XX.XX.GRCh37-vcf.gz

GRCh38 VCF:
unzip mastermind_cited_variants_reference-XXXX.XX.XX-grch38-vcf.zip
bgzip mastermind_cited_variants_reference-XXXX.XX.XX-GRCh38-vcf
tabix -p vcf mastermind_cited_variants_reference-XXXX.XX.XX.GRCh38-vcf.gz

The plugin can then be run as default:

 ./vep -i variations.vcf --plugin Mastermind,/path/to/mastermind_cited_variants_reference-XXXX.XX.XX.GRChXX-vcf.gz

or with an option to not filter by mutations (first flag):

 ./vep -i variations.vcf --plugin Mastermind,/path/to/mastermind_cited_variants_reference-XXXX.XX.XX.GRChXX-vcf.gz,1

or with an option to only return 'MMID3' e.g. the Mastermind variant identifier as gene:key (second flag):

 ./vep -i variations.vcf --plugin Mastermind,/path/to/mastermind_cited_variants_reference-XXXX.XX.XX.GRChXX-vcf.gz,0,

or with an option to also return the Mastermind URL (third flag):

 ./vep -i variations.vcf --plugin Mastermind,/path/to/mastermind_cited_variants_reference-XXXX.XX.XX.GRChXX-vcf.gz,0,

Note: While running this plugin as default, i.e. filtering by mutation, if a variant doesn't affect
the protein sequence, the citation data can be appended to a transcript with different consequence.
Example
VEP: upstream_gene_variant
Mastermind: intronic
VEP output: var_1|1:154173185-154173187|C|ENSG00000143549|ENST00000368545|Transcript|upstream_gene_variant|
-|-|-|-|-|-|IMPACT=MODIFIER;DISTANCE=508;STRAND=-1;Mastermind_MMID3=TPM3:E62int;Mastermind_counts=1|1|1;

https://github.com/Ensembl/VEP_plugins/blob/release/104/Mastermind.pm

Plugin Description

MaxEntScan This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
runs MaxEntScan (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html)
to get splice site predictions. ...

The plugin copies most of the code verbatim from the score5.pl and score3.pl
scripts provided in the MaxEntScan download. To run the plugin you must get and
unpack the archive from http://genes.mit.edu/burgelab/maxent/download/; the path
to this unpacked directory is then the param you pass to the --plugin flag.

The plugin executes the logic from one of the scripts depending on which
splice region the variant overlaps:

score5.pl : last 3 bases of exon --> first 6 bases of intron
score3.pl : last 20 bases of intron --> first 3 bases of exon

The plugin reports the reference, alternate and difference (REF - ALT) maximum
entropy scores.

If 'SWA' is specified as a command-line argument, a sliding window algorithm
is applied to subsequences containing the reference and alternate alleles to
identify k-mers with the highest donor and acceptor splice site scores. To assess
the impact of variants, reference comparison scores are also provided. For SNVs,
the comparison scores are derived from sequence in the same frame as the highest
scoring k-mers containing the alternate allele. For all other variants, the
comparison scores are derived from the highest scoring k-mers containing the
reference allele. The difference between the reference comparison and alternate
scores (SWA_REF_COMP - SWA_ALT) are also provided.

If 'NCSS' is specified as a command-line argument, scores for the nearest
upstream and downstream canonical splice sites are also included.

By default, only scores are reported. Add 'verbose' to the list of command-
line arguments to include the sequence output associated with those scores.

MPC
missense deleteriousness metric

A VEP plugin that retrieves MPC scores for variants from a tabix-indexed MPC data file. ...

MPC is a missense deleteriousness metric based on the analysis of genic regions
depleted of missense mutations in the Exome Agggregation Consortium (ExAC) data.

The MPC score is the product of work by Kaitlin Samocha (ks20@sanger.ac.uk).
Publication currently in pre-print: Samocha et al bioRxiv 2017 (TBD)

The MPC score file is available to download from:

ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/regional_missense_constraint/

The data are currently mapped to GRCh37 only. Not all transcripts are included; see
README in the above directory for exclusion criteria.

MTR
Missense Tolerance Ratio

A VEP plugin that retrieves Missense Tolerance Ratio (MTR) scores for
variants from a tabix-indexed flat file. ...

MTR scores quantify the amount of purifying selection acting
specifically on missense variants in a given window of protein-coding
sequence. It is estimated across a sliding window of 31 codons and uses
observed standing variation data from the WES component of the Exome
Aggregation Consortium Database (ExAC), version 2.0
(http://gnomad.broadinstitute.org).

Please cite the MTR publication alongside the VEP if you use this resource:
http://genome.cshlp.org/content/27/10/1715

The Bio::DB::HTS perl library or tabix utility must be installed in your path
to use this plugin. MTR flat files can be downloaded from:
ftp://mtr-viewer.mdhs.unimelb.edu.au/pub

NB: Data are available for GRCh37 only

NearestExonJB This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
finds the nearest exon junction boundary to a coding sequence variant. More than
one boundary may be reported if the boundaries are equidistant. ...

The plugin will report the Ensembl identifier of the exon, the distance to the
exon boundary, the boundary type (start or end of exon) and the total
length in nucleotides of the exon.

Various parameters can be altered by passing them to the plugin command:

- max_range : maximum search range in bp (default: 10000)

Parameters are passed e.g.:

 --plugin NearestExonJB,max_range=50000

https://github.com/Ensembl/VEP_plugins/blob/release/104/MaxEntScan.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/MPC.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/MTR.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/NearestExonJB.pm

Plugin Description

NearestGene This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
finds the nearest gene(s) to a non-genic variant. More than one gene
may be reported if the genes overlap the variant or if genes are
equidistant. ...

Various parameters can be altered by passing them to the plugin command:

- limit : limit the number of genes returned (default: 1)
- range : initial search range in bp (default: 1000)
- max_range : maximum search range in bp (default: 10000)

Parameters are passed e.g.:

 --plugin NearestGene,limit=3,max_range=50000

This plugin requires a database connection. It cannot be run with VEP
in offline mode i.e. using the --offline flag.

neXtProt This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
retrieves data for missense and stop gain variants from neXtProt, which is a comprehensive
human-centric discovery platform that offers integration of and navigation
through protein-related data for example, variant information, localization
and interactions (https://www.nextprot.org/). ...

Please cite the neXtProt publication alongside the VEP if you use this resource:
https://doi.org/10.1093/nar/gkz995

This plugin is only suitable for small sets of variants as an additional
individual remote API query is run for each variant.

Running options:
(Default) the data retrieved by default is the MatureProtein, NucleotidePhosphateBindingRegion,
Variant, MiscellaneousRegion, TopologicalDomain and InteractingRegion.
The plugin can also be run with other options to retrieve other data than the default.

Options are passed to the plugin as key=value pairs:
max_set : Set value to 1 to return all available protein-related data
(includes the default data)

return_values : The set of data to be returned with different data separated by '&'.
Use file 'neXtProt_headers.txt' to check which data (labels) are available.
Example: --plugin neXtProt,return_values='Domain&InteractingRegion'

url : Set value to 1 to include the URL to link to the neXtProt entry.

all_labels : Set value to 1 to include all labels, even if data is not available.

position : Set value to 1 to include the start and end position in the protein.

* note: 'max_set' and 'return_values' cannot be used simultaneously.

Output:
By default, the plugin only returns data that is available. Example (default behaviour):
neXtProt_MatureProtein=Rho guanine nucleotide exchange factor 10

The option 'all_labels' returns a consistent set of the requested fields, using "-" where
values are not available. Same example as above:
neXtProt_MatureProtein=Rho guanine nucleotide exchange factor 10;
neXtProt_InteractingRegion=-;neXtProt_NucleotidePhosphateBindingRegion=-;neXtProt_Variant=-;
neXtProt_MiscellaneousRegion=-;neXtProt_TopologicalDomain=-;

Of notice, multiple values can be returned for the same label. In this case, the values will
be separeted by '|' for tab and txt format, and '&' for VCF format.

The plugin can then be run as default:

 ./vep -i variations.vcf --plugin neXtProt

or to return only the data specified by the user:

 ./vep -i variations.vcf --plugin neXtProt,return_values='Domain&InteractingRegion'

https://github.com/Ensembl/VEP_plugins/blob/release/104/NearestGene.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/neXtProt.pm

Plugin Description

Phenotypes A VEP plugin that retrieves overlapping phenotype information. ...

On the first run for each new version/species/assembly will
download a GFF-format dump to ~/.vep/Plugins/

Ensembl provides phenotype annotations mapped to a number of genomic
feature types, including genes, variants and QTLs.

This plugin is best used with JSON output format; the output will be
more verbose and include all available phenotype annotation data and
metadata.

For other output formats, only a concatenated list of phenotype
description strings is returned.

Several paramters can be set using a key=value system:

dir : provide a dir path, where either to create anew the species
specific file from the download or to look for an existing file

file : provide a file path, either to create anew from the download
or to point to an existing file

exclude_sources: exclude sources of phenotype information. By default
HGMD and COSMIC annotations are excluded. See
http://www.ensembl.org/info/genome/variation/phenotype/sources_phenotype_documentation.html
Separate multiple values with '&'

include_sources: force include sources, as exclude_sources

exclude_types : exclude types of features. By default StructuralVariation
and SupportingStructuralVariation annotations are excluded
due to their size. Separate multiple values with '&'.
Valid types: Gene, Variation, QTL, StructuralVariation,
SupportingStructuralVariation, RegulatoryFeature

include_types : force include types, as exclude_types

expand_right : sets cache size in bp. By default annotations 100000bp (100kb)
downstream of the initial lookup are cached

phenotype_feature : report the specific gene or variation the phenotype is
linked to, this can be an overlapping gene or structural variation,
and the source of the annotation (default 0)

Example:

 --plugin Phenotypes,file=${HOME}/phenotypes.gff.gz,include_types=Gene

 --plugin Phenotypes,dir=${HOME},include_types=Gene

PON_P2 This plugin for Ensembl Variant Effect Predictor (VEP) computes the predictions of PON-P2
for amino acid substitutions in human proteins. PON-P2 is developed and maintained by
Protein Structure and Bioinformatics Group at Lund University and is available at
http://structure.bmc.lu.se/PON-P2/. ...

To run this plugin, you will require a python script and its dependencies (Python,
python suds). The python file can be downloaded from http://structure.bmc.lu.se/PON-P2/vep.html/
and the complete path to this file must be supplied while using this plugin.

https://github.com/Ensembl/VEP_plugins/blob/release/104/Phenotypes.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/PON_P2.pm

Plugin Description

PostGAP A VEP plugin that retrieves data for variants from a tabix-indexed PostGAP file (1-based file). ...

Please refer to the PostGAP github and wiki for more information:
https://github.com/Ensembl/postgap
https://github.com/Ensembl/postgap/wiki
https://github.com/Ensembl/postgap/wiki/algorithm-pseudo-code

The Bio::DB::HTS perl library or tabix utility must be installed in your path
to use this plugin. The PostGAP data file can be downloaded from
https://storage.googleapis.com/postgap-data.

The file must be processed and indexed by tabix before use by this plugin.
PostGAP has coordinates for both GRCh38 and GRCh37; the file must be
processed differently according to the assembly you use.

> wget https://storage.googleapis.com/postgap-data/postgap.txt.gz
> gunzip postgap.txt.gz

GRCh38
> (grep ^"ld_snp_rsID" postgap.txt; grep -v ^"ld_snp_rsID" postgap.txt | sort -k4,4 -k5,5n) | bgzip > postgap_GRCh38.txt.gz
> tabix -s 4 -b 5 -e 5 -c l postgap_GRCh38.txt.gz

GRCh37
> (grep ^"ld_snp_rsID" postgap.txt; grep -v ^"ld_snp_rsID" postgap.txt | sort -k2,2 -k3,3n) | bgzip > postgap_GRCh37.txt.gz
> tabix -s 2 -b 3 -e 3 -c l postgap_GRCh37.txt.gz

Note that in the last command we tell tabix that the header line starts with "l";
this may change to the default of "#" in future versions of PostGAP.

When running the plugin by default 'disease_efo_id', 'disease_name', 'gene_id'
and 'score' information is returned e.g.

--plugin POSTGAP,/path/to/PostGap.gz

You may include all columns with ALL; this fetches a large amount of data per
variant!:

--plugin POSTGAP,/path/to/PostGap.gz,ALL

You may want to select only a specific subset of additional information to be
reported, you can do this by specifying the columns as parameters to the plugin e.g.

--plugin POSTGAP,/path/to/PostGap.gz,gwas_pmid,gwas_size

If a requested column is not found, the error message will report the
complete list of available columns in the POSTGAP file. For a brief description
of the available information please refer to the 'How do I use POSTGAP output?'
section in the POSTGAP wiki.

Tabix also allows the data file to be hosted on a remote server. This plugin is
fully compatible with such a setup - simply use the URL of the remote file:

--plugin PostGAP,http://my.files.com/postgap.txt.gz

Note that gene sequences referred to in PostGAP may be out of sync with
those in the latest release of Ensembl; this may lead to discrepancies with
scores retrieved from other sources.

ProteinSeqs This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
prints out the reference and mutated protein sequences of any
proteins found with non-synonymous mutations in the input file. ...

You should supply the name of file where you want to store the
reference protein sequences as the first argument, and a file to
store the mutated sequences as the second argument.

Note that, for simplicity, where stop codons are gained the plugin
simply substitutes a '*' into the sequence and does not truncate the
protein. Where a stop codon is lost any new amino acids encoded by the
mutation are appended to the sequence, but the plugin does not attempt
to translate until the next downstream stop codon. Also, the protein
sequence resulting from each mutation is printed separately, no attempt
is made to apply multiple mutations to the same protein.

https://github.com/Ensembl/VEP_plugins/blob/release/104/PostGAP.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/ProteinSeqs.pm

Plugin Description

ReferenceQuality This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
reports on the quality of the reference genome using GRC data at the location of your variants.
More information can be found at: https://www.ncbi.nlm.nih.gov/grc/human/issues ...

The following steps are necessary before running this plugin:

GRCh38:

Download
ftp://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
ftp://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3

cat annotated_clone_assembly_problems_GCF_000001405.38.gff3 GRCh38.p12_issues.gff3 > GRCh38_quality_mergedfile.gff3
sort -k 1,1 -k 4,4n -k 5,5n GRCh38_quality_mergedfile.gff3 > sorted_GRCh38_quality_mergedfile.gff3
bgzip sorted_GRCh38_quality_mergedfile.gff3
tabix -p gff sorted_GRCh38_quality_mergedfile.gff3.gz

The plugin can then be run with:

 ./vep -i variations.vcf --plugin ReferenceQuality,sorted_GRCh38_quality_mergedfile.gff3.gz

GRCh37:

Download
ftp://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
ftp://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3

cat annotated_clone_assembly_problems_GCF_000001405.25.gff3 GRCh37.p13_issues.gff3 > GRCh37_quality_mergedfile.gff3
sort -k 1,1 -k 4,4n -k 5,5n GRCh37_quality_mergedfile.gff3 > sorted_GRCh37_quality_mergedfile.gff3
bgzip sorted_GRCh37_quality_mergedfile.gff3
tabix -p gff sorted_GRCh37_quality_mergedfile.gff3.gz

The plugin can then be run with:

 ./vep -i variations.vcf --plugin ReferenceQuality,sorted_GRCh37_quality_mergedfile.gff3.gz

The tabix utility must be installed in your path to use this plugin.

REVEL This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds the REVEL score for missense variants to VEP output. ...

Please cite the REVEL publication alongside the VEP if you use this resource:
https://www.ncbi.nlm.nih.gov/pubmed/27666373

REVEL scores can be downloaded from: https://sites.google.com/site/revelgenomics/downloads
and can be tabix-processed by:

cat revel_all_chromosomes.csv | tr "," "\t" > tabbed_revel.tsv
sed '1s/.*/#&/' tabbed_revel.tsv > new_tabbed_revel.tsv
bgzip new_tabbed_revel.tsv

for GRCh37:
tabix -f -s 1 -b 2 -e 2 new_tabbed_revel.tsv.gz

for GRCh38:
zcat new_tabbed_revel.tsv.gz | head -n1 > h
zgrep -h -v ^#chr new_tabbed_revel.tsv.gz | awk '$3 != "." ' | sort -k1,1 -k3,3n - | cat h - | bgzip -c > new_tabbed_revel_grch38.tsv.gz
tabix -f -s 1 -b 3 -e 3 new_tabbed_revel_grch38.tsv.gz

The tabix utility must be installed in your path to use this plugin.

SameCodon A VEP plugin that reports existing variants that fall in the same codon.

https://github.com/Ensembl/VEP_plugins/blob/release/104/ReferenceQuality.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/REVEL.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/SameCodon.pm

Plugin Description

satMutMPRA A VEP plugin that retrieves data for variants from a tabix-indexed satMutMPRA file (1-based file).
The saturation mutagenesis-based massively parallel reporter assays (satMutMPRA) measures variant
effects on gene RNA expression for 21 regulatory elements (11 enhancers, 10 promoters). ...

The 20 disease-associated regulatory elements and one ultraconserved enhancer analysed in different cell lines are the following:
- ten promoters (of TERT, LDLR, HBB, HBG, HNF4A, MSMB, PKLR, F9, FOXE1 and GP1BB) and
- ten enhancers (of SORT1, ZRS, BCL11A, IRF4, IRF6, MYC (2x), RET, TCF7L2 and ZFAND3) and
- one ultraconserved enhancer (UC88).

Please refer to the satMutMPRA web server and Kircher M et al. (2019) paper for more information:
https://mpra.gs.washington.edu/satMutMPRA/
https://www.ncbi.nlm.nih.gov/pubmed/31395865

Parameters can be set using a key=value system:
file : required - a tabix indexed file of the satMutMPRA data corresponding to desired assembly.

pvalue : p-value threshold (default: 0.00001)

cols : colon delimited list of data types to be returned from the satMutMPRA data
(default: 'Value', 'P-Value', and 'Element')

incl_repl : include replicates (default: off):
- full replicate for LDLR promoter (LDLR.2) and SORT1 enhancer (SORT1.2)
- a reversed sequence orientation for SORT1 (SORT1-flip)
- other conditions: PKLR-48h, ZRSh-13h2, TERT-GAa, TERT-GBM, TERG-GSc

The Bio::DB::HTS perl library or tabix utility must be installed in your path
to use this plugin. The satMutMPRA data file can be downloaded from
https://mpra.gs.washington.edu/satMutMPRA/

satMutMPRA data can be downloaded for both GRCh38 and GRCh37 from the web server (https://mpra.gs.washington.edu/satMutMPRA/):
'Download' section, select 'GRCh37' or 'GRCh38' for 'Genome release' and 'Download All Elements'.

The file must be processed and indexed by tabix before use by this plugin.

GRCh38
> (grep ^Chr GRCh38_ALL.tsv; grep -v ^Chr GRCh38_ALL.tsv | sort -k1,1 -k2,2n) | bgzip > satMutMPRA_GRCh38_ALL.gz
> tabix -s 1 -b 2 -e 2 -c C satMutMPRA_GRCh38_ALL.gz

GRCh37
> (grep ^Chr GRCh37_ALL.tsv; grep -v ^Chr GRCh37_ALL.tsv | sort -k1,1 -k2,2n) | bgzip > satMutMPRA_GRCh37_ALL.gz
> tabix -s 1 -b 2 -e 2 -c C satMutMPRA_GRCh37_ALL.gz

When running the plugin by default 'Value', 'P-Value', and 'Element'
information is returned e.g.

--plugin satMutMPRA,file=/path/to/satMutMPRA_GRCh38_ALL.gz

You may include all columns with ALL; this fetches all data per variant
(e.g. Tags, DNA, RNA, Value, P-Value, Element):

--plugin satMutMPRA,file=/path/to/satMutMPRA_GRCh38_ALL.gz,cols=ALL

You may want to select only a specific subset of information to be
reported, you can do this by specifying the specific columns as parameters to the plugin e.g.

--plugin satMutMPRA,file=/path/to/satMutMPRA_GRCh38_ALL.gz,cols=Tags:DNA

If a requested column is not found, the error message will report the
complete list of available columns in the satMutMPRA file. For a detailed description
of the available information please refer to the manuscript or online web server.

Tabix also allows the data file to be hosted on a remote server. This plugin is
fully compatible with such a setup - simply use the URL of the remote file:

--plugin satMutMPRA,file=http://my.files.com/satMutMPRA.gz

Note that gene locations referred to in satMutMPRA may be out of sync with
those in the latest release of Ensembl; this may lead to discrepancies with
information retrieved from other sources.

SingleLetterAA This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
returns a HGVSp string with single amino acid letter codes

https://github.com/Ensembl/VEP_plugins/blob/release/104/satMutMPRA.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/SingleLetterAA.pm

Plugin Description

SpliceAI A VEP plugin that retrieves pre-calculated annotations from SpliceAI.
SpliceAI is a deep neural network, developed by Illumina, Inc
that predicts splice junctions from an arbitrary pre-mRNA transcript sequence. ...

Delta score of a variant, defined as the maximum of (DS_AG, DS_AL, DS_DG, DS_DL),
ranges from 0 to 1 and can be interpreted as the probability of the variant being
splice-altering. The author-suggested cutoffs are:
0.2 (high recall)
0.5 (recommended)
0.8 (high precision)

This plugin is available for both GRCh37 and GRCh38.

More information can be found at:
https://pypi.org/project/spliceai/

Please cite the SpliceAI publication alongside VEP if you use this resource:
https://www.ncbi.nlm.nih.gov/pubmed/30661751

Running options:
(Option 1) By default, this plugin appends all scores from SpliceAI files.
(Option 2) Besides the pre-calculated scores, it can also be specified a score
cutoff between 0 and 1.

Output:
The output includes the gene symbol, delta scores (DS) and delta positions (DP)
for acceptor gain (AG), acceptor loss (AL), donor gain (DG), and donor loss (DL).

For tab the output contains one header 'SpliceAI_pred' with all
the delta scores and positions. The format is:
SYMBOL|DS_AG|DS_AL|DS_DG|DS_DL|DP_AG|DP_AL|DP_DG|DP_DL

For JSON the output is a hash with the following format:
"spliceai":
{"DP_DL":0,"DS_AL":0,"DP_AG":0,"DS_DL":0,"SYMBOL":"X","DS_AG":0,"DP_AL":0,"DP_DG":0,"DS_DG":0}

For VCF output the delta scores and positions are stored in different headers.
The values are 'SpliceAI_pred_xx' being 'xx' the score/position.
Example: 'SpliceAI_pred_DS_AG' is the delta score for acceptor gain.

Gene matching:
If SpliceAI contains scores for multiple genes that overlap the same genomic location,
the plugin compares the gene from the SpliceAI file with the gene symbol from the input variant.
If none of the gene symbols match, the plugin does not return any scores.

If plugin is run with option 2, the output also contains a flag: 'PASS' if delta score
passes the cutoff, 'FAIL' otherwise.

The following steps are necessary before running this plugin:

The files with the annotations for all possible substitutions (snv), 1 base insertions
and 1-4 base deletions (indel) within genes are available here:
https://basespace.illumina.com/s/otSPW8hnhaZR

GRCh37:
tabix -p vcf spliceai_scores.raw.snv.hg37.vcf.gz
tabix -p vcf spliceai_scores.raw.indel.hg37.vcf.gz

GRCh38:
tabix -p vcf spliceai_scores.raw.snv.hg38.vcf.gz
tabix -p vcf spliceai_scores.raw.indel.hg38.vcf.gz

The plugin can then be run:

 ./vep -i variations.vcf --plugin SpliceAI,snv=/path/to/spliceai_scores.raw.snv.hg38.vcf.gz,

indel=/path/to/spliceai_scores.raw.indel.hg38.vcf.gz

 ./vep -i variations.vcf --plugin SpliceAI,snv=/path/to/spliceai_scores.raw.snv.hg38.vcf.gz,

indel=/path/to/spliceai_scores.raw.indel.hg38.vcf.gz,cutoff=0.5

SpliceRegion This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
provides more granular predictions of splicing effects. ...

Three additional terms may be added:

splice_donor_5th_base_variant : variant falls in the 5th base after the splice donor junction (5' end of intron)

v
...EEEEEIIIIIIIIII...

(E = exon, I = intron, v = variant location)

splice_donor_region_variant : variant falls in region between 3rd and 6th base after splice junction (5' end of intron)

vv vvv
...EEEEEIIIIIIIIII...

splice_polypyrimidine_tract_variant : variant falls in polypyrimidine tract at 3' end of intron, between 17 and 3 bases from the end

vvvvvvvvvvvvvvv
...IIIIIIIIIIIIIIIIIIIIEEEEE...

https://github.com/Ensembl/VEP_plugins/blob/release/104/SpliceAI.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/SpliceRegion.pm

Plugin Description

StructuralVariantOverlap A VEP plugin that retrieves information from overlapping structural variants. ...

Parameters can be set using a key=value system:

file : required - a VCF file of reference data.

percentage : percentage overlap between SVs (default: 80)
reciprocal : calculate reciprocal overlap, options: 0 or 1. (default: 0)
(overlap is expressed as % of input SV by default)

cols : colon delimited list of data types to return from the INFO fields (only AF by default)

same_type : 1/0 only report SV of the same type (eg deletions for deletions, off by default)

distance : the distance the ends of the overlapping SVs should be within.

match_type : only report reference SV which lie within or completely surround the input SV
options: within, surrounding

label : annotation label that will appear in the output (default: "SV_overlap")
Example- input: label=mydata, output: mydata_name=refSV,mydata_PC=80,mydata_AF=0.05

Example reference data

1000 Genomes Project:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz

gnomAD::
https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2_sv.sites.vcf.gz

Example:

 ./vep -i structvariants.vcf --plugin StructuralVariantOverlap,file=gnomad_v2_sv.sites.vcf.gz

SubsetVCF A VEP plugin to retrieve overlapping records from a given VCF file.
Values for POS, ID, and ALT, are retrieved as well as values for any requested
INFO field. Additionally, the allele number of the matching ALT is returned. ...

Though similar to using '--custom', this plugin returns all ALTs for a given
POS, as well as all associated INFO values.

By default, only VCF records with a filter value of "PASS" are returned,
however this behaviour can be changed via the 'filter' option.

Parameters:
name: short name added used as a prefix (required)
file: path to tabix-index vcf file (required)
filter: only consider variants marked as 'PASS', 1 or 0 (default, 1)
fields: info fields to be returned (default, not used)
'%' can delimit multiple fields
'*' can be used as a wildcard

Returns:
_POS: POS field from VCF
_REF: REF field from VCF (minimised)
_ALT: ALT field from VCF (minimised)
_alt_index: Index of matching variant (zero-based)
_: List of requested info values

TSSDistance A VEP plugin that calculates the distance from the transcription
start site for upstream variants.

We hope that these will serve as useful examples for users implementing new plugins. If you have any questions about the system, or suggestions for enhancements please let us know on
the ensembl-dev mailing list.
We also encourage you to share any plugins you develop: we are happy to accept pull requests on the VEP_plugins git repository.

There are further published plugins available outside the VEP repository including:

LOFTEE a Loss-Of-Function Transcript Effect Estimator (Konrad Karczewski et al,2020)

UTRannotator which annotates high-impact five prime UTR variants (Xiaolei Zhang et al,2020)

How it works

Plugins are run once VEP has finished its analysis for each line of the output, but before anything is printed to the output file.
When each plugin is called (using the run method) it is passed two data structures to use in its analysis; the first is a data structure containing all the data for the current line, and the second is
a reference to a variation API object that represents the combination of a variant allele and an overlapping or nearby genomic feature (such as a transcript or regulatory region).
This object provides access to all the relevant API objects that may be useful for further analysis by the plugin (such as the current VariationFeature and Transcript).
Please refer to the Ensembl Variation API documentation for more details.

Functionality

We expect that most plugins will simply add information to the last column of the output file, the "Extra" column, and the plugin system assumes this in various places, but plugins are also free
to alter the output line as desired.

The only hard requirement for a plugin to work with VEP is that it implements a number of required methods (such as new which should create and return an instance of this plugin,
get_header_info which should return descriptions of the type of data this plugin produces to be included in VEP output's header, and run which should actually perform the logic of the plugin).
To make development of plugins easier, we suggest that users use the Bio::EnsEMBL::Variation::Utils::BaseVepPlugin module as their base class, which provides default implementations of
all the necessary methods which can be overridden as required.
Please refer to the documentation in this module for details of all required methods and for a simple example of a plugin implementation.

Filtering using plugins

https://github.com/Ensembl/VEP_plugins/blob/release/104/StructuralVariantOverlap.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/SubsetVCF.pm
https://github.com/Ensembl/VEP_plugins/blob/release/104/TSSDistance.pm
http://lists.ensembl.org/mailman/listinfo/dev
http://github.com/Ensembl/VEP_plugins
https://github.com/konradjk/loftee
https://www.nature.com/articles/s41586-020-2308-7
https://github.com/ImperialCardioGenetics/UTRannotator
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa783/5905476
https://www.ensembl.org/info/docs/Doxygen/variation-api/index.html
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1Utils_1_1BaseVepPlugin.html

A common use for plugins will be to filter the output in some way (for example to limit output lines to missense variants) and so we provide a simple mechanism to support this.
The run method of a plugin is assumed to return a reference to a hash containing information to be included in the output, and if a plugin should not add any data to a particular line it should
return an empty hashref. If a plugin should instead filter a line and exclude it from the output, it should return undef from its run method, this also means that no further plugins will be run on
the line.
If you are developing a filter plugin, we suggest that you use the Bio::EnsEMBL::Variation::Utils::BaseVepFilterPlugin as your base class and then you need only override the include_line
method to return true if you want to include this line, and false otherwise.
Again, please refer to the documentation in this module for more details and an example implementation of a missense filter.

Using plugins

In order to run a plugin you need to include the plugin module in Perl's library path somehow; by default VEP includes the ~/.vep/Plugins directory in the path, so this is a convenient place to
store plugins, but you are also able to include modules by any other means (e.g using the $PERL5LIB environment variable in Unix-like systems).
You can then run a plugin using the --plugin command line option, passing the name of the plugin module as the argument.

For example, if your plugin is in a module called MyPlugin.pm, stored in ~/.vep/Plugins, you can run it with a command line like:

./vep -i input.vcf --plugin MyPlugin

You can pass arguments to the plugin's 'new' method by including them after the plugin name on the command line, separated by commas, e.g.:

./vep -i input.vcf --plugin MyPlugin,1,FOO

If your plugin inherits from BaseVepPlugin, you can then retrieve these parameters as a list from the params method.

You can run multiple plugins by supplying multiple --plugin arguments. Plugins are run serially in the order in which they are specified on the command line, so they can be run as a pipeline,
with, for example, a later plugin filtering output based on the results from an earlier plugin. Note though that the first plugin to filter a line 'wins', and any later plugins won't get run on a filtered
line.

Intergenic variants

When a variant falls in an intergenic region, it will usually not have any consequence types called, and hence will not have any associated VariationFeatureOverlap objects. In this special
case, VEP creates a new VariationFeatureOverlap that overlaps a feature of type "Intergenic".
To force your plugin to handle these, you must add "Intergenic" to the feature types that it will recognize; you do this by writing your own feature_types sub-routine:

sub feature_types {
 return ['Transcript', 'Intergenic'];
}

This will cause your plugin to handle any variation features that overlap transcripts or intergenic regions. To also include any regulatory features, you should use the generic type "Feature":

sub feature_types {
 return ['Feature', 'Intergenic'];
}

https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1Utils_1_1BaseVepFilterPlugin.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_plugin
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_plugin

Variant Effect Predictor Examples and use cases

Example commands

Read input from STDIN, output to STDOUT

./vep --cache -o stdout

Add regulatory region consequences

./vep --cache -i variants.txt --regulatory

Input file variants.vcf.txt, input file format VCF, add gene symbol identifiers

./vep --cache -i variants.vcf.txt --format vcf --symbol

Filter out common variants based on 1000 Genomes data

./vep --cache -i variants.txt --filter_common

Force overwrite of output file variants_output.txt, check for existing co-located variants, output only coding sequence consequences, output HGVS names

./vep --cache -i variants.txt -o variants_output.txt --force --check_existing --coding_only --hgvs

Specify DB connection parameters in registry file ensembl.registry, add SIFT score and prediction, PolyPhen prediction

./vep --database -i variants.txt --registry ensembl.registry --sift b --polyphen p

Connect to Ensembl Genomes db server for Arabidopsis thaliana

./vep --database -i variants.txt --genomes --species arabidopsis_thaliana

Load config from ini file, run in quiet mode

./vep --config vep.ini -i variants.txt -q

Use cache in /home/vep/mycache/, use gzcat instead of zcat

./vep --cache --dir /home/vep/mycache/ -i variants.txt --compress gzcat

Add custom position-based phenotype annotation from remote BED file

./vep --cache -i variants.vcf --custom ftp://ftp.myhost.org/data/phenotypes.bed.gz,phenotype

Use the plugin named MyPlugin, output only the variation name, feature, consequence type and MyPluginOutput fields

./vep --cache -i variants.vcf --plugin MyPlugin --fields Uploaded_variation,Feature,Consequence,MyPluginOutput

Right align variants before consequence calculation. For more information, see here.

./vep --cache -i variants.vcf --shift_3prime 1

gnomAD and ExAC

gnomAD exome frequency data is included in VEP's cache files from release 90, replacing ExAC; use --af_gnomad to enable using this data. VEP can also retrieve frequency data from the
gnomAD genomes set or ExAC via VEP's custom annotation functionality.

For the latest gnomAD data, please visit gnomAD downloads .

1. VEP requires Bio::DB::HTS to read data from tabix-indexed VCFs - see installation instructions

2. Ensembl's FTP site hosts abridged VCF files for gnomAD and ExAC, additionally remapped to GRCh38 using CrossMap . It is possible for VEP to read these files directly from their
remote location, though for optimal performance the VCF and index should be downloaded to a local file system.

GRCh38

gnomAD genomes (r2.1, remapped with CrossMap): [VCFs and tabix indexes]

gnomAD exomes (r2.1, remapped with CrossMap): [VCFs and tabix indexes]

ExAC (v0.3, remapped using CrossMap): [VCF] [tabix index]

GRCh37

gnomAD genomes (r2.1): [VCF and tabix indexes]

gnomAD exomes (r2.1): [VCF and tabix indexes]

ExAC (v0.3): [VCF] [tabix index]

3. Run VEP with the following command (using the GRCh38 input example) to get locations and continental-level allele frequencies:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache \
--custom gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz,gnomADg,vcf,exact,0,AF_AFR,AF_AMR,AF_ASJ,AF_EAS,AF_FIN,AF_NFE,AF_OTH

You will then see data under field names as described in the VEP output header:

https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#shifting
http://gnomad.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomad
https://gnomad.broadinstitute.org/downloads
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
http://crossmap.sourceforge.net/
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh38/variation_genotype/gnomad/r2.1/genomes/
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh38/variation_genotype/gnomad/r2.1/exomes/
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh38/variation_genotype/ExAC.0.3.GRCh38.vcf.gz
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh38/variation_genotype/ExAC.0.3.GRCh38.vcf.gz.tbi
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh37/variation_genotype/
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh37/variation_genotype/
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh37/variation_genotype/ExAC.0.3.GRCh37.vcf.gz
http://ftp.ensemblgenomes.org/vol1/pub/viruses/data_files/homo_sapiens/GRCh37/variation_genotype/ExAC.0.3.GRCh37.vcf.gz.tbi

Human (GRCh38)
phastCons 7-way

phastCons 20-way

phastCons 100-way

phyloP 7-way

phyloP 20-way

phyloP 100-way

Human (GRCh37)
GERP

phastCons 46-way

phastCons 100-way

phyloP 46-way

phyloP 100-way

gnomADg : gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz (exact)
gnomADg_AFR_AF : AFR_AF field from gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz
gnomADg_AMR_AF : AMR_AF field from gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz
...

where the gnomADg field contains the ID (or coordinates if no ID found) of the variant in the VCF file. Any of the fields in the gnomAD file INFO field can be added by appending them to
the list in your VEP command.

Conservation scores

You can use VEP's custom annotation feature to add conservation scores to your output. For example, to add GERP scores, download the bigWig file from the list below, and run VEP with the
following flag:

./vep --cache -i example.vcf --custom All_hg19_RS.bw,GERP,bigwig

Example conservation score files:

All files provided by the UCSC genome browser - files for other species are available from their FTP site , though be sure to use the file corresponding to the correct assembly.

dbNSFP

dbNSFP - "a lightweight database of human nonsynonymous SNPs and their functional predictions" - provides pathogenicity predictions from many tools (including SIFT, PolyPhen, LRT,
MutationTaster, FATHMM) across every possible missense substitution in the human proteome. The data is available to download , and while it cannot be immediately used by the VEP it is
simple to process the data into a format that the dbNSFP.pm plugin can use.

After downloading the file, you will need to process it so that tabix can index it correctly. This will take a while as the file is very large! Note that you will need the tabix utility in your path to
use dbNSFP.

unzip dbNSFP4.0b2a.zip
head -n1 dbNSFP4.0b2a_variant.chr1 > dbNSFP4.0b2a.txt
cat dbNSFP4.0b2a_variant.chr* | grep -v "#" >> dbNSFP4.0b2a.txt
rm dbNSFP4.0b2a_variant.chr*
bgzip dbNSFP4.0b2a.txt
tabix -s 1 -b 2 -e 2 dbNSFP4.0b2a.txt.gz

Then simply download the dbNSFP VEP plugin and place it either in $HOME/.vep/Plugins/ or a path in your $PERL5LIB. When you run VEP with the plugin, you will need to select some
of the columns that you wish to retrieve; to list them run VEP with the plugin and the path to the dbNSFP file and no further parameters:

./vep --cache --force --plugin dbNSFP,dbNSFP4.0b2a.txt.gz
2014-04-04 11:27:05 - Read existing cache info
2014-04-04 11:27:05 - Auto-detected FASTA file in cache directory
2014-04-04 11:27:05 - Checking/creating FASTA index
2014-04-04 11:27:05 - Failed to instantiate plugin dbNSFP: ERROR: No columns selected to fetch. Available columns are:
#chr,pos(1-coor),ref,alt,aaref,aaalt,hg18_pos(1-coor),genename,Uniprot_acc,
Uniprot_id,Uniprot_aapos,Interpro_domain,cds_strand,refcodon,SLR_test_statistic,
codonpos,fold-degenerate,Ancestral_allele,Ensembl_geneid,Ensembl_transcriptid,
...

Note that some of these fields are replicates of those produced by the core VEP code (e.g. SIFT, PolyPhen, the 1000 Genomes and ESP frequencies) - you should use the options to enable
these from the VEP code in place of the annotations from dbNSFP as the dbNSFP file covers only missense substitutions. Other fields, such as the conservation scores, may be better served
by using genome-wide files as described above.

To select fields, just add them as a comma-separated list to your command line:

./vep --cache --force --plugin dbNSFP,dbNSFP4.0b2a.txt.gz,LRT_score,FATHM_score,MutationTaster_score

One final point to note is that the dbNSFP scores are frozen on a particular Ensembl release's transcript set; check the readme file on their download site to find out exactly which. While in the
majority of cases protein sequences don't change between releases, in some circumstances the protein sequence used by VEP in the latest release may differ from the sequence used to
calculate the scores in dbNSFP.

Structural Variants

VEP can be used to annotate structural variants with their predicted effect on other genomic features. Input data should be supplied as VCF.

Prediction process

The INFO keys 'END' or 'SVLEN' are present, the proportion of any overlapping feature covered by the variant is calculated

If the SVTYPE or ALT is 'DEL', the variant tested for feature ablation/ truncation

If the SVTYPE or ALT is 'DUP', the variant tested for feature amplification

If the SVTYPE or ALT is 'INS' or 'DUP', the variant tested for feature elongatation

SVTYPE is used in preference to ALT to derive the variant type of an SV with 'CN*' alleles

Reported overlaps

VEP calculates the length and proportion of each genomic feature overlapped by a structural variant

Use the --overlaps option to enable this when using VCF or tab format. (This is reported by default in standard VEP and JSON format.)

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons7way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons20way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons100way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP7way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP20way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way/
http://hgdownload.soe.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons100way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP100way/
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
http://hgdownload.soe.ucsc.edu/goldenPath/
https://www.ensembl.org/Homo_sapiens/Info/Annotation#assembly
http://www.ncbi.nlm.nih.gov/pubmed/21520341
https://sites.google.com/site/jpopgen/dbNSFP
http://samtools.sourceforge.net/tabix.shtml
https://github.com/Ensembl/VEP_plugins/blob/release/104/dbNSFP.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_sift
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_polyphen
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_esp
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_overlaps

The keys bp_overlap and percentage_overlap are used in JSON format and OverlapBP and OverlapPC in other formats.

Changing memory requirements

By default, VEP does not annotate variants larger than 10M. If you are using the command line tool, you can use the --max_sv_size option to modify this.

By default, variants are analysed in batches of 5000. Using the --buffer_size option to reduce this can reduce memory requirements, especially if your data is sparse. A smaller buffer size
is essential when annotating structural variants with regulatory data.

Citations and VEP users

VEP is used by many organisations and projects:

VEP forms a part of Illumina's VariantStudio software

Gemini is a framework for exploring genome variation that uses VEP

The DECIPHER project uses VEP in its analysis pipelines

Other citations and use cases:

VAX is a suite of plugins for VEP that expands its functionality

pViz is a visualisation tool for VEP results files

McCarthy et al compares VEP to AnnoVar

Pabinger et al reviews variant analysis software, including VEP

VEP is used to provide annotation for the ExAC and gnomAD projects

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_max_sv_size
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_buffer_size
http://variantstudio.software.illumina.com/
http://gemini.readthedocs.org/
http://decipher.sanger.ac.uk/
http://bib.oxfordjournals.org/content/early/2014/03/12/bib.bbu008.full
http://research-pub.gene.com/pviz/app/vep/
http://genomemedicine.com/content/6/3/26/abstract
http://bib.oxfordjournals.org/content/early/2013/01/21/bib.bbs086.full
http://exac.broadinstitute.org/
http://gnomad.broadinstitute.org/

Variant Effect Predictor Other information

Getting VEP to run faster

Set up correctly, VEP is capable of processing around 3 million variants in 30 minutes. There are a number of steps you can take to make sure your VEP installation is running as fast as
possible:

1. Make sure you have the latest version of VEP and the Ensembl API. We regularly introduce optimisations, alongside the new features and bug fixes of a typical new release.

2. Download a cache file for your species. If you are using --database, you should consider using --cache or --offline instead. Any time VEP has to access data from the database (even if
you have a local copy), it will be slower than accessing data in the cache on your local file system.

Enabling certain flags forces VEP to access the database, and you will be warned at startup that it will do this with e.g.:

2011-06-16 16:24:51 - INFO: Database will be accessed when using --check_svs

Consider carefully whether you need to use these flags in your analysis.

3. If you use --check_existing or any flags that invoke it (e.g. --af, --af_1kg, --filter_common, --everything), tabix-convert your cache file. Checking for known variants using a converted cache
is >100% faster than using the default format.

4. Download a FASTA file (and use the flag --fasta) if you use --hgvs or --check_ref. Again, this will prevent VEP accessing the database unnecessarily (in this case to retrieve genomic
sequence).

5. Using forking enables VEP to run multiple parallel "threads", with each thread processing a subset of your input. Most modern computers have more than one processor core, so running
VEP with forking enabled can give huge speed increases (3-4x faster in most cases). Even computers with a single core will see speed benefits due to overheads associated with using
object-oriented code in Perl.

To use forking, you must choose a number of forks to use with the --fork flag. We recommend using 4 forks:

./vep -i my_input.vcf --fork 4 --offline

but depending on various factors specific to your setup you may see faster performance with fewer or more forks.

When writing plugins be aware that while the VEP code attempts to preserve the state of any plugin-specific cached data between separate forks, there may be situations where data is
lost. If you find this is the case, you should disable forking in the new() method of your plugin by deleting the "fork" key from the $config hash.

6. Make sure your cache and FASTA files are stored on the fastest file system or disk you have available. If you have a lot of memory in your machine, you can even pre-copy the files to
memory using tmpfs .

7. Consider if you need to generate HGVS notations (--hgvs); this is a complex annotation step that can add ~50-80% to your runtime. Note also that --hgvs is switched on by --everything.

8. Install the Set::IntervalTree Perl package. This package speeds up VEP's internals by changing how overlaps between variants and transcript components are calculated.

9. Install the Ensembl::XS package. This contains compiled versions of certain key subroutines used in VEP that will run faster than the default native Perl equivalents. Using this should
improve runtime by 5-10%.

10. Add the --no_stats flag. Calculating summary statistics increases VEP runtime, so can be switched off if not required

11. VEP is optimised to run on input files that are sorted in chromosomal order. Unsorted files will still work, albeit more slowly.

12. For very large files (for example those from whole-genome sequencing), VEP process can be easily parallelised by dividing your file into chunks (e.g. by chromosome). VEP will also work
with tabix-indexed, bgzipped VCF files, and so the tabix utility could be used to divide the input file:

 tabix -h variants.vcf.gz 12:1000000-20000000 | ./vep --cache --vcf

Species with multiple assemblies

Ensembl currently supports the two latest human assembly versions. We provide a VEP cache using the latest software version (104) for both GRCh37 and GRCh38.

The VEP installer will install and set up the correct cache and FASTA file for your assembly of interest. If using the --AUTO functionality to install without prompts, remember to add the
assembly version required using e.g. "--ASSEMBLY GRCh37". It is also possible to have concurrent installations of caches from both assemblies; just use the --assembly to select the correct
one when you run VEP.

Once you have installed the relevant cache and FASTA file, you are then able to use VEP as normal. If you are using GRCh37 and require database access in addition to the cache (for
example, to look up variant identifiers using --format id, see cache limitations), you will be warned you that you must change the database port in order to connect to the correct database:

ERROR: Cache assembly version (GRCh37) and database or selected assembly version (GRCh38) do not match

If using human GRCh37 add "--port 3337" to use the GRCh37 database, or --offline to avoid database connection entirely

If you have data you wish to map to a new assembly, you can use the Ensembl assembly converter tool - if you've downloaded VEP, then you have it already! The tool is found in the ensembl-
tools/scripts/assembly_converter folder. There is also an online version of the tool available. Both UCSC (liftOver) and NCBI (Remap) also provide tools for converting data between
assemblies.

Summarising annotation

By default VEP is configured to provide annotation on every genomic feature that each input variant overlaps. This means that if a variant overlaps a gene with multiple alternate splicing
variants (transcripts), then a block of annotation for each of these transcripts is reported in the output. In the default VEP output format each of these blocks is written on a single line of output;
in VCF output format the blocks are separated by commas in the INFO field.

A number of options are provided to reduce the amount of output produced if this depth of annotation is not required.

Example

Input data (VCF - input.vcf)

##fileformat=VCFv4.2
#CHROM POS ID REF ALT
1 230710048 rs699 A G
1 230710514 var_2 A G,T

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#download
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#limitations
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_filter_common
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#convert
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fork
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.howtoforge.com/storing-files-directories-in-memory-with-tmpfs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
http://search.cpan.org/~benbooth/Set-IntervalTree/lib/Set/IntervalTree.pm
https://github.com/Ensembl/ensembl-xs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_stats
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#limitations
https://www.ensembl.org/info/docs/tools/index.html
https://genome.ucsc.edu/util.html
http://www.ncbi.nlm.nih.gov/genome/tools/remap
https://www.ensembl.org../vep_formats.html#output
https://www.ensembl.org../vep_formats.html#vcfout

Example of VEP command and output (no "pick" option):

Options

--pick

This is the option we anticipate will be of use. VEP chooses one block of annotation per variant, using an ordered set of criteria. This order may be customised using --pick_order.

1. canonical status of transcript

2. APPRIS isoform annotation

3. transcript support level

4. biotype of transcript ("protein_coding" preferred)

5. CCDS status of transcript

6. consequence rank according to this table

7. translated, transcript or feature length (longer preferred)

8. MANE transcript status

example of VEP command and output, with the "--pick" option.

--pick_allele

As above, but chooses one consequence block per variant allele. This can be useful for VCF input files with more than one ALT allele.

example of VEP command and output, with the "--pick_allele" option.

--per_gene

As --pick, but chooses one annotation block per gene that the input variant overlaps.

example of VEP command and output, with the "--per_gene" option.

--pick_allele_gene

As above, but chooses one consequence block per variant allele and gene combination.

example of VEP command and output, with the "--pick_allele_gene" option.

--flag_pick

Instead of choosing one block and removing the others, this option adds a flag "PICK=1" to picked annotation block, allowing you to easily filter on this later using VEP's filtering tool.

--flag_pick_allele

As above, but flags one block per allele.

--flag_pick_allele_gene

As above, but flags one block per allele and gene combination.

--most_severe

This flag reports only the consequence type of the block with the highest rank, according to this table.

./vep --cache -i input.vcf -o output.txt

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position CDS_position Protein_position Amino_acids
rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript missense_variant 1018 803 268 M/T aTg/aCg - IMPACT=MODERA
rs699 1:230710048 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MODIFI
var_2 1:230710514 G ENSG00000135744 ENST00000366667 Transcript synonymous_variant 552 337 113 L Ttg/Ctg - IMPACT=LOW;ST
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript missense_variant 552 337 113 L/M Ttg/Atg - IMPACT=MODERA
var_2 1:230710514 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MODIFI
var_2 1:230710514 T ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MODIFI

./vep --cache -i input.vcf -o output.txt --pick

rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript missense_variant 1018 803 268 M/T aTg/aCg - IMPACT=MODERATE;
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript missense_variant 552 337 113 L/M Ttg/Atg - IMPACT=MODERATE;

./vep --cache -i input.vcf -o output.txt --pick_allele

rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript missense_variant 1018 803 268 M/T aTg/aCg - IMPACT=MODERATE
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript missense_variant 552 337 113 L/M Ttg/Atg - IMPACT=MODERATE
var_2 1:230710514 G ENSG00000135744 ENST00000366667 Transcript synonymous_variant 552 337 113 L Ttg/Ctg - IMPACT=LOW;STRA

./vep --cache -i input.vcf -o output.txt --per_gene

rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript missense_variant 1018 803 268 M/T aTg/aCg - IMPACT=MO
rs699 1:230710048 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MO
var_2 1:230710514 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MO
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript missense_variant 552 337 113 L/M Ttg/Atg - IMPACT=MO

./vep --cache -i input.vcf -o output.txt --pick_allele_gene

rs699 1:230710048 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MO
rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript missense_variant 1018 803 268 M/T aTg/aCg - IMPACT=MO
var_2 1:230710514 T ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MO
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript missense_variant 552 337 113 L/M Ttg/Atg - IMPACT=MO
var_2 1:230710514 G ENSG00000135744 ENST00000366667 Transcript synonymous_variant 552 337 113 L Ttg/Ctg - IMPACT=LO
var_2 1:230710514 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant - - - - - - IMPACT=MO

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_order
https://www.ensembl.org/Help/Glossary?id=521
https://www.ensembl.org/Help/Glossary?id=492
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org../vep_formats.html#vcf
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences

example of VEP command and output, with the "--most_severe" option.

./vep --cache -i input.vcf -o output.txt --most_severe

rs699 1:230710048 - - - - missense_variant - - - - - - -
var_2 1:230710514 - - - - missense_variant - - - - - - -

--summary

This flag reports only a comma-separated list of the consequence types predicted for this variant.

example of VEP command and output, with the "--summary" option.

./vep --cache -i input.vcf -o output.txt --summary

rs699 1:230710048 - - - - missense_variant,downstream_gene_variant - - - - - - -
var_2 1:230710514 - - - - missense_variant,synonymous_variant,downstream_gene_variant - - - - - - -

HGVS notations

Output

HGVS notations can be produced by VEP using the --hgvs flag. Coding (c.) and protein (p.) notations given against Ensembl identifiers use versioned identifiers that guarantee the identifier
refers always to the same sequence.

Genomic HGVS notations may be reported using --hgvsg. Note that the named reference for HGVSg notations will be the chromosome name from the input (as opposed to the officially
recommended chromosome accession).

HGVS notations for insertions or deletions are by default shifted 3-prime relative to the reported transcript or protein sequence in accordance with HGVS specifications. This may lead to
discrepancies between the coordinates reported in the HGVS nomenclature and the coordinate columns reported by VEP. You may instruct VEP not to shift using --shift_hgvs 0.

Reference sequence used as part of VEP's HGVSc calculations is taken from a given FASTA file, rather than the variant reference. HGVSp is calculated using the given variant reference.

Input

VEP supports using HGVS notations as input. This feature is currently under development and not all HGVS notation types are supported. Notations relative to genomic (g.) or coding (c.)
sequences are fully supported; protein (p.) notations are supported in limited fashion due to the complexity involved in determining the multiple possible underlying genomic sequence
changes that could produce a single protein change. A warning will be given if a particular notation cannot be parsed.

By default VEP uses Ensembl transcripts as the reference for determining consequences, and hence also for HGVS notations. However, it is possible to parse HGVS notations that use
RefSeq transcripts as the reference sequence by using the --refseq flag. Such notations must include the version number of the transcript e.g.

NM_080794.3:c.1001C>T

where ".3" denotes that this is version 3 of the transcript NM_080794. See below for more details on how VEP can use RefSeq transcripts.

RefSeq transcripts

If you prefer to exclude predicted RefSeq transcripts (those with identifiers beginning with "XM_" or "XR_") use --exclude_predicted.

Identifiers and other data

VEP's RefSeq cache lacks many classes of data present in the Ensembl transcript cache.

Included in the RefSeq cache

Gene symbol

SIFT and PolyPhen predictions

Not included in the RefSeq cache

APPRIS annotation

TSL annotation

UniProt identifiers

CCDS identifiers

Protein domains

Gene-phenotype association data

Differences to the reference genome

RefSeq transcript sequences may differ from the genome sequence to which they are aligned. Ensembl's API (and hence VEP) constructs transcript models using the genomic reference
sequence. These differences are accounted for using BAM-edited transcript models. in human cache files from release 90 onwards. Prior to release 90 and in non-human species differences
between the RefSeq sequence and the genomic sequence are not accounted for, so some annotations produced by VEP on these transcripts may be inaccurate. Most differences occur in
non-coding regions, typically in UTRs at either end of transcripts or in the addition of a poly-A tail, causing minimal impact on annotation.

For human VEP cache files, each RefSeq transcript is annotated with the REFSEQ_MATCH flag indicating whether and how the RefSeq model differs from the underlying genome.

Correcting transcript models with BAM files

NCBI have released BAM files that contain alignments of RefSeq transcripts to the genome. From release 90 onwards, these alignments have been incorporated and used to correct the
transcript models in the human RefSeq and merged cache files.

VEP's cache building process uses the sequence and alignment in the BAM to correct the RefSeq model. If the corrected model does not match the original RefSeq sequence in the BAM, the
corrected model is discarded. The success or failure of the BAM edit is recorded in the BAM_EDIT field of the VEP output. Failed edits are extremely rare (< 0.01% of transcripts), but any
VEP annotations produced on transcripts with a failed edit status should be interpreted with extreme caution.

Using BAM-edited transcripts causes VEP to change how alleles are interpreted from input variants. Input variants are typically encoded in VCFs that are called using the reference genome.
This means that the alternate (ALT) allele as given in the VCF may correspond to the reference allele as found in the corrected RefSeq transcript model. VEP will account for this, using the

http://varnomen.hgvs.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/genome/stable_ids/index.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvsg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_predicted
https://www.ensembl.org../vep_formats.html#refseq_match

corrected reference allele (by enabling --use_transcript_ref) when calculating consequences, and the GIVEN_REF and USED_REF fields in the VEP output indicate any change made. If the
reference allele derived from the transcript matches any given alternate (ALT) allele, then no consequence data will be produced for this allele as it will be considered non-variant. Note that
this process may also clash with any interpretation from using --check_ref, so it is recommended to avoid using this flag.

To override the behaviour of --use_transcript_ref and force VEP to use your input reference allele instead of the one derived from the transcript, you may use --use_given_ref.

VEP can also side-load BAM files at runtime to correct transcript models on-the-fly; this allows corrections to be applied for other species, where alignments are available, or when using
RefSeq GFF files, rather than the cache.

./vep --cache --refseq -i variants.vcf --species mus_musculus --bam GCF_000001635.26_GRCm38.p6_knownrefseq_alns.bam

BAM files are available from NCBI:

Human GRCh38.p13

Human GRCh37.p13

Existing or colocated variants

Use the --check_existing flag to identify known variants colocated with input variant. VEP's known variant cache is derived from Ensembl's variation database and contains variants from
dbSNP and other sources.

VEP by default uses a normalisation-based allele matching algorithm to identify known variants that match input variants. Since both input and known variants may have multiple alternate
(ALT) or variant alleles, each pair of reference (REF) and ALT alleles are normalised and compared independently to arrive at potential matches. VCF permits multiple allele types to be
encoded on the same line, while dbSNP assigns separate rsID identifiers to different allele types at the same locus. This means different alleles from the same input variant may be assigned
different known variant identifiers.

Illustration of VEP's allele matching algorithm resolving one VCF line with multiple ALTs to three different variant types and coordinates

Note that allele matching occurs independently of any allele transformations carried out by --minimal; VEP will match to the same identifiers and frequency data regardless of whether the flag
is used.

For some data sources (COSMIC, HGMD), Ensembl is not licensed to redistribute allele-specific data, so VEP will report the existence of co-located variants with unknown alleles without
carrying out allele matching. To disable this behaviour and exclude these variants, use the --exclude_null_alleles flag.

To disable allele matching completely and compare variant locations only, use --no_check_alleles.

Frequency data

In addition to identifying known variants, VEP also reports allele frequencies for input alleles from major genotyping projects (1000 genomes, ESP and gnomAD). VEP's cache currently
contains only frequency data for alleles that have been submitted to dbSNP or are imported via another source into the Ensembl variation database. This means that until gnomAD's full data
set is submitted to dbSNP and incorporated into Ensembl, the frequency for some alleles may be missing from VEP's cache data.

To access the full gnomAD data set, it is possible to use VEP's custom annotation feature to retrieve the frequency data directly from the gnomAD VCF files; see instructions here.

Normalising Consequences

Insertions and deletions in repetitive sequences can be often described at different equivalent locations and may therefore be assigned different consequence predictions. VEP can optionally
convert variant alleles to their most 3’ representation before consequence calculation.

In the example below, we insert a G at the start of the repeated region. Without the --shift_3prime flag, VEP will calculate consequences at the input position and report the variant as a
frameshift, and recognising that the variant lies within 2 bases of a splice site, as splice_region_variant.

./vep --cache -id '3 46358467 . A AG'

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position CDS_position Protein_posi
3_46358468_-/G 3:46358467-46358468 G ENSG00000121807 ENST00000292301 Transcript frameshift_variant,splice_region_variant

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_use_transcript_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_use_transcript_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_use_given_ref
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/annotation_releases/109.20200815/GCF_000001405.39_GRCh38.p13/RefSeq_transcripts_alignments/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/annotation_releases/105.20190906/GCF_000001405.25_GRCh37.p13/RefSeq_transcripts_alignments/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/genome/variation/species/sources_documentation.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_minimal
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_null_alleles
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_check_alleles
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_esp
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomad
https://www.ensembl.org/info/genome/variation/species/sources_documentation.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad

However, with --shift_3prime switched on, VEP will right align all insertions and deletions within repeated regions, shifting the inserted G two positions to the right before consequence
calculation, providing the splice_donor_variant consequence instead.

./vep --cache -id '3 46358467 . A AG' --shift_3prime 1

Using --shift_genomic will also update the location field. However, --shift_genomic will also shift intergenic variants, which can lead to a reduction in performance.

./vep --cache -id '3 46358467 . A AG' --shift_genomic 1

When shifting, insertions or deletions of length 2 or more can lead to alterations in the reported alternate allele. For example, an insertion of GAC that can be shifted 2 bases in the 3' direction
will alter the alternate allele to CGA.

./vep --cache -id '3 46358464 . A AGAC' --shift_3prime 1

./vep --cache -id '3 46358464 . A AGAC' --shift_3prime 0

 IMPACT=HIGH;STRAND=1
...

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position CDS_position Protein_posi
3_46358468_-/G 3:46358467-46358468 G ENSG00000121807 ENST00000292301 Transcript splice_donor_variant - - -
...

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position CDS_position Protein_posi
3_46358468_-/G 3:46358469-46358470 G ENSG00000121807 ENST00000292301 Transcript splice_donor_variant - - -
...

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position CDS_position Protein_posi
3_46358465_-/GAC 3:46358464-46358465 CGA ENSG00000121807 ENST00000292301 Transcript inframe_insertion,splice_region_vari
...

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position CDS_position Protein_posi
3_46358465_-/GAC 3:46358464-46358465 GAC ENSG00000121807 ENST00000292301 Transcript inframe_insertion 1422-1423

Variant Effect Predictor FAQ

For any questions not covered here, please send an email to the Ensembl developer's mailing list (public) or contact the Ensembl Helpdesk (private).

General questions

Q: Why has my insertion/deletion variant encoded in VCF disappeared from the VEP output?

Ensembl treats unbalanced variants differently to VCF - your variant hasn't disappeared, it may have just changed slightly! You can solve this by giving your variants a unique identifier in the
third column of the VCF file. See here for a full discussion.

Q: Why don't I see any co-located variants when using species X?

Ensembl only has variation databases for a subset of all Ensembl species - see this document for details.

Q: Why do I see multiple known variants mapped to my input variant?

VEP compares you input to known variants from the Ensembl variation database. In some cases one input variant can match multiple known variants:

Germline variants from dbSNP and somatic mutations from COSMIC may be found at the same locus

Some sources, e.g. HGMD, do not provide public access to allele-specific data, so an HGMD variant with unknown alleles may colocate with one from dbSNP with known alleles

Multiple alternate alleles from your input may match different variants as they are described in dbSNP

See here for a full discussion.

Q: VEP is not assigning a frequency to my input variant - why?

VEP's cache contains frequency data only for variants and alleles imported into Ensembl's variation database. See here for a full discussion.

Q: Why do I see so many lines of output for each variant in my input?

While it would be convenient to have a simple, one word answer to the question "What is the consequence of this variant?", in reality biology is not this simple! Many genes have more than
one transcript, so VEP provides a prediction for each transcript that a variant overlaps. VEP has options to help select results according to your requirements; the --canonical and --ccds
options indicate which transcripts are canonical and belong to the CCDS set respectively, while --pick, --per_gene, --summary and --most_severe allow you to give a more summary level
assessment per variant.

Furthermore, several "compound" consequences are also possible - if, for example, a variant falls in the final few bases of an exon, it may be considered to affect a splicing site, in addition to
possibly affecting the coding sequence.

Q: How do I reduce VEP's memory requirement?

There are a number of ways to do this-

1. Ensure your input file is sorted by location. This can greatly reduce memory requirements and runtime

2. Consider reducing the buffer size. This reduces the number of variants annotated together in a batch and can be modified in both command line and web interfaces. Reducing buffer size
may increase run time.

3. Ensure you are only using the options you need, rather than --everything. Some data-rich options, such as regulatory annotation have an impact on memory use

Web VEP questions

Q: How do I access the web version of the Variant Effect Predictor?

You can find the web VEP on the Tools page.

Q: Why is the output I get for my input file different when I use the web VEP and command line VEP?

Ensure that you are passing equivalent arguments to the script that you are using in the web version. If you are sure this is still a problem, please report it on the ensembl-dev mailing list.

Command line VEP questions

Q: How can I make VEP run faster?

There are a number of factors that influence how fast VEP runs. Have a look at our handy guide for tips on improving VEP runtime.

Q: Why do I see "N" as the reference allele in my HGVS strings?

Q: Why do I see the following error (or similar) in my VEP output?

Both of these error types are usually seen when using a FASTA file for retrieving sequence. There are a couple of steps you can take to try to remedy them:

1. The index alongside the FASTA can become corrupted. Delete [fastafile].index and re-run VEP to regenerate it. By default this file is located in your
$HOME/.vep/[species]/[version]_[assembly] directory.

2. The FASTA file itself may have been corrupted during download; delete the fasta file and the index and re-download (you can use the VEP installer to do this).

3. Older versions of BioPerl (1.2.3 in particular is known to have this) cannot properly index large FASTA files. Make sure you are using a later (>=1.6) version of BioPerl. The VEP installer
installs 1.6.924 for you.

If you still see problems after taking these steps, or if you were not using a FASTA file in the first place, please contact us.

substr outside of string at /nfs/users/nfs_w/wm2/Perl/ensembl-variation/modules/Bio/EnsEMBL/Variation/Utils/Sequence.pm line 511.
Use of uninitialized value $ref_allele in string eq at /nfs/users/nfs_w/wm2/Perl/ensembl-variation/modules/Bio/EnsEMBL/Variation/Utils/Seque
Use of uninitialized value in concatenation (.) or string at /nfs/users/nfs_w/wm2/Perl/ensembl-variation/modules/Bio/EnsEMBL/Variation/Utils

https://www.ensembl.org/info/about/contact/index.html
https://www.ensembl.org/Help/Contact
https://www.ensembl.org/info/docs/tools/vep/script/vep_formats.html#vcf
https://www.ensembl.org/info/genome/variation/species/species_data_types.html#source
https://www.ensembl.orgscript/vep_other.html#colocated
https://www.ensembl.orgscript/vep_other.html#colocated
https://www.ensembl.orgscript/vep_options.html#opt_canonical
https://www.ensembl.orgscript/vep_options.html#opt_ccds
https://www.ensembl.orgscript/vep_options.html#opt_pick
https://www.ensembl.orgscript/vep_options.html#opt_per_gene
https://www.ensembl.orgscript/vep_options.html#opt_summary
https://www.ensembl.orgscript/vep_options.html#opt_most_severe
https://www.ensembl.org/info/docs/tools/index.html
http://lists.ensembl.org/mailman/listinfo/dev
https://www.ensembl.orgscript/vep_other.html#faster
https://www.ensembl.orgscript/vep_cache.html#fasta
https://www.ensembl.orgscript/vep_download.html#install
https://www.ensembl.orgscript/vep_download.html#install

Q: Why do I see the following warning?

WARNING: Chromosome 21 not found in annotation sources or synonyms on line 160

This can occur if the chromosome names differ between your input variant and any annotation source that you are using (cache, database, GFF/GTF file, FASTA file, custom annotation file).
To circumvent this you may provide VEP with a synonyms file. A synonym file is included in VEP's cache files, so if you have one of these for your species you can use it as follows:

./vep -i input.vcf -cache -synonyms ~/.vep/homo_sapiens/104_GRCh38/chr_synonyms.txt

The file consists of lines containing pairs of tab-separated synonyms. Order is not important as synonyms can be used in both "directions".

Q: Can I get gnomAD or ExAC allele frequencies in VEP?

Yes, see this guide.

Q: Why do I see the following error?

By default VEP is configured to connect to the public MySQL server at ensembldb.ensembl.org. Occasionally the server may break connection with your process, which causes this error. This
can happen when the server is busy, or due to various network issues. Consider using a local copy of the database, or the caching system.

Q: Can I use VEP on Windows?

Yes - see the documentation for a few different ways to get the VEP running on Windows.

Q: Can I download all of the SIFT and/or PolyPhen predictions?

The Ensembl Variation database and the human VEP cache file contain precalculated SIFT and PolyPhen-2 predictions for every possible amino acid change in every translated protein
product in Ensembl. Since these data are huge, we store them in a compressed format. The best approach to extract them is to use our Perl API.

The format in which the data are stored in our database is described here

The simplest way to access these matrices is to use an API script to fetch a ProteinFunctionPredictionMatrix for your protein of interest and then call its 'get_prediction' method to get the
score for a particular position and amino acid, looping over all possible amino acids for your position. There is some detailed documentation on this class in the API documentation here.

You would need to work out which peptide position your codon maps to, but there are methods in the TranscriptVariationAllele class that should help you (probably translation_start and
translation_end).

Could not connect to database homo_sapiens_core_63_37 as user anonymous using [DBI:mysql:database=homo_sapiens_core_63_37;host=ensembldb.ens
Unknown MySQL server host 'ensembldb.ensembl.org' (2) at $HOME/src/ensembl/modules/Bio/EnsEMBL/DBSQL/DBConnection.pm line 290.

-------------------- EXCEPTION --------------------
MSG: Could not connect to database homo_sapiens_core_63_37 as user anonymous using [DBI:mysql:database=homo_sapiens_core_63_37;host=ensembld
Unknown MySQL server host 'ensembldb.ensembl.org' (2)

https://www.ensembl.orgscript/vep_options.html#opt_synonyms
https://www.ensembl.orgscript/vep_example.html#gnomad
https://www.ensembl.orgscript/vep_cache.html#local
https://www.ensembl.orgscript/vep_cache.html#cache
https://www.ensembl.orgscript/vep_download.html#windows
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#nsSNP_data_format
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1ProteinFunctionPredictionMatrix.html
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1TranscriptVariation.html

